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a  b  s  t  r  a  c  t

Gray  wolves  (Canis lupus)  have  complex  life-histories  due, in  part,  to mating  systems  that  depend  on
intra-group  dominance  hierarchies  set  within  an  inter-group  (pack)  social  structure  linked  to  philopatric
territories.  In  addition  to this  spatially  oriented  social  structure,  mortality  risk  associated  with  interac-
tions with  humans  varies  spatially.  We  developed  an  individual-based  spatially  explicit  (IBSE) model
for  the  southern  Lake  Superior  wolf  population  to better  capture  the  life-history  of  wolves  in  a  harvest
model.  Simulated  wolves  underwent  an  annual  cycle  of  life-history  stage-dependent  mate-finding,  dis-
persal, reproduction,  and  aging  on  a simulated  landscape  reflecting  spatially  explicit  state  and  water
boundaries,  Indian  reservation  boundaries  and  ceded  territories,  wolf  harvest  zones,  livestock  depreda-
tion areas,  and  a spatial  mortality  risk  surface.  The  latter  3  surfaces  were  linked  to mortality  events  for
simulated  wolves.  We  assessed  our  IBSE  model  and  conducted  a sensitivity  analysis  of  the  most  uncer-
tain  parameters  with  a categorical  calibration  of  patterns  observed  at the  individual,  pack,  population,
and  landscape  level.  We  found  that without  recreational  harvest,  the  Wisconsin  wolf  population  grew
to  an  average  carrying  capacity  of 1242  wolves  after  50  years  and  breeding  pairs  persisted  for  a  mean
1.8  years.  We  simulated  6  recreational  harvest  scenarios  with  varying  rates  and  timings  of  harvest  and
assessed  effects  on  population  size,  pack  sizes,  age  ratios,  dispersal  and  immigration  rates,  and  breeding
pair  tenures  of  the  Wisconsin  wolf  population.  The  simulated  harvest  with  rates  of  14%  which  corre-
sponded  to the  2012  harvest  in  Wisconsin  reduced  the populations  4% in  the  first  year  of  harvest  and
equilibrated  to  the  pre-harvest  population  size  after  20 years  of  harvest,  on  average.  A 30%  harvest  rate
across  the simulation  on  average  reduced  the  populations  by 65%  after  20 years  with  some  populations
going  extinct  before  100  years.  In  general,  harvest  increased  the  proportion  of pups in  the  simulated
populations  and  decreased  breeding  pair  tenure.  Targeted  lethal  control  was  more  effective  than  harvest
for  reducing  the  number  of  wolves  near  known  livestock  depredation  sites.  Our  model  facilitates  predic-
tion  of important  population  patterns  that  is  simultaneously  dependent  on  complexities  associated  with
spatially structured  life  history  and  mortality.

© 2015  Elsevier  B.V.  All  rights  reserved.

Abbreviations: IBSE, individual-based spatially explicit; SLS, southern Lake Supe-
rior referring to Wisconsin and the Upper Peninsula of Michigan; WHZ, wolf harvest
zone.
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1. Introduction

Wildlife populations experience life history events that have
seasonal and spatial patterns. Animals that live in areas with higher
road density may  have a higher risk of death by vehicle collision,
and in many cases offspring enter the population as a birth pulse in
the spring (Packard, 2003). This variability is important to consider
when tracking changes in a population throughout the year and to
understand how different mortality sources affect the population.
However, many population-based models currently used often do
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not capture the seasonal life history events that drive population
dynamics (Gotelli, 1995). In these cases, individual-based model-
ing is an excellent way to integrate seasonal and spatial life history
events to gain a better understanding of the population properties
that emerge because of the decisions and behaviors of individuals
(Grimm and Railsback, 2005; Macal and North, 2010).

Individual-based modeling is increasing in ecology to answer
pragmatic questions and to explore ecological theories (Grimm and
Railsback, 2005). In populations with complex social structures,
population prediction can be especially difficult because individ-
uals contribute differently to the population depending on their
social role. Gray wolves (Canis lupus) have a social structure where
breeding pairs and their offspring make up packs (Mech and Boitani,
2003). Because not all wolves are breeders, the population effect
from the death of a wolf depends on that wolf’s social status, the
time of year, and the size of the population. The death of a pregnant
female wolf would reduce population recruitment while the death
of non-reproductive yearling would have no effect on population
recruitment in the next year beyond its own contribution to over-
all mortality. Concerning the time of the year when a wolf death
occurs, the death of a potential breeder before breeding season may
or may  not have a population effect depending on whether there
is time for replacement of that breeder (Brainerd et al., 2008). All
of these population effects are more pronounced at small popula-
tion sizes because of demographic stochasticity and possible Allee
effects (Berec et al., 2001). With individual-based models, individ-
ual differences can be modeled explicitly leading to a more realistic
population model.

Individual-based models are sometimes used to understand the
effect of various management actions (Grimm et al., 2005). Antic-
ipating the need for removal strategies of problem wolves from
the growing Minnesota wolf population, Haight et al. (2002) devel-
oped an individual-based model to test the effect of three wolf
removal strategies and the combinations of multiple strategies. This
individual-based model provided guidance to managers on wolf
removal strategies by showing that proactive removal of wolves
in areas near farms reduced depredations, removed fewer wolves
than the reactive strategy, and was the least costly strategy (Haight
et al., 2002). In another example, an individual-based spatially
explicit (IBSE) model was used to understand the effect of social
structure on canid populations and evaluate coyote management
strategies (Conner et al., 2008; Pitt et al., 2003). This IBSE model
showed that spatially intensive removal of coyotes was  longer-
lasting and more effective than random removal of coyotes (Conner
et al., 2008). These examples demonstrate the utility inherent in
individual-based models and their use as realistic, practical, and
theoretical tools.

An IBSE model, though complex, makes explicit assumptions
that enhance model transparency (Grimm,  1999). IBSE models
require less abstraction than population-based models and this
makes them easier to conceptualize by different groups of peo-
ple. Stakeholders interested in an issue can include science in
their discussions through IBSE models that simulate different man-
agement scenarios (Bousquet and Le Page, 2004). However, it
is important that IBSE models used to make management deci-
sions are well-documented. This documentation should include
model assumptions, parameter values, model assessment, sensitiv-
ity analysis, and model predictions over a range of scenarios (Bart,
1995; Thiele et al., 2014).

We developed an IBSE model to explore the effects of human-
caused mortality sources on wolves in the southern Lake Superior
(SLS) region. The purpose of our model was to understand how
wolf colonization and distribution in the SLS region was affected
by roads, agriculture, and different mortality sources linked to the
landscape, political boundaries, and management. Our model pro-
vided a visual and quantitative tool to understand and predict wolf

population growth in Wisconsin. The model also enabled evalua-
tion of spatially structured harvest scenarios on the Wisconsin wolf
population. The Ojibwe (also known as Chippewa) Indians of north-
ern Wisconsin hold rights to harvest of living natural resources,
including wolves, both on and off of their reservations independent
of state regulations. The Ojibwe tribes have different population
and zone objectives than does the State of Wisconsin and our IBSE
model allowed for the reconfiguration of zones and harvest rates
to assess harvest effects from the tribes’ perspective. Specifically,
our objectives were to: (1) build and document a plausible IBSE
model of the colonization of the Wisconsin and Michigan wolf
population from resident Minnesota wolves, (2) assess the model
and conduct a sensitivity analysis of uncertain parameters using
observed patterns at the individual, pack, population, and land-
scape levels, (3) use the model to explore the effects of different
types and timing of human mortality sources that occurred on dif-
ferent parts on the simulated landscape, and (4) demonstrate the
use of the IBSE model as a platform for evaluating management
proposals.

2. Materials and methods

2.1. Spatial mortality risk map

The IBSE model derived population parameters based on the
collective behaviors and fates of individual wolves interacting with
mortality risk that varied spatially. To create a spatial mortality risk
component, we took a heuristic approach to scaling a simulated
wolf’s annual probability of mortality on the basis of road density
and amount of agriculture in the SLS region (Wydeven et al., 2009b).
The response variable was the dead (N = 195) or alive (N = 15,134)
status of radio-telemetry locations for each of 195 wolves in
Wisconsin’s radio-telemetry database that were monitored consis-
tently and found dead sometime during 1979–2012 (see Wydeven
et al., 2009b for wolf capture, handling, radio-collaring, and track-
ing methods). We  used logistic regression conditioned on a wolf’s
identity to remove unobserved individual heterogeneity (Gail et al.,
1981).

We  used roads and agriculture as predictors because these vari-
ables were selected from a suite of 16 variables (some highly
correlated) in an analysis of the probability of wolf pack territory
occupancy in Wisconsin by Mladenoff et al. (2009). We  quanti-
fied road density (km/km2) and percentage of agriculture in 1 km
buffers around each radio-telemetry location (see Appendix A for
details on road and agriculture parameter derivation). We  per-
formed the conditional logistic regression in Program R (Version
3.0.1, R Development Core Team, 2013) using function ‘clogit’ in
the ‘survival’ package (Therneau, 2013).

We divided a 630 km × 554 km landscape of the SLS region
centered on Wisconsin into 1 km2 pixels, and obtained road den-
sity and percent agriculture covariates for each 1 km2 land pixel.
Next, we  obtained a fitted value for each land pixel from the
conditional logistic regression model using Raster Calculator in
ArcMap (Version 9.2, Environmental Systems Research Institute,
2009). These fitted values were the probabilities that an aver-
age wolf’s radio-telemetry location would be a death location.
Because the predicted probability values did not directly translate
to annual mortality rates, we scaled these fitted values to reflect
the annual mortality rate for wolves in Wisconsin (Wydeven et al.,
2009b). The scaling reflected the estimated annual mortality rate
for wolves in primary wolf range in Wisconsin (Stenglein, 2014).
Therefore, the spatial mortality risk map  reflected the majority of
the annual probability of mortality for the simulated wolves (see
Appendix A for details on spatial mortality risk surface model and
use).
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