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a  b  s  t  r  a  c  t

Natural  and designed  ecological  corridors  are  key  elements  for the survival  of  a species,  as  they  allow
the  species  to avoid  local  extinction  by migrating  to  more  suitable  habitat  patches.  This  paper  studies
various  reliability  metrics  for  the  process  of  migration  in a metapopulation  landscape  network  from  a
critical  habitat  patch  to destination  habitat  patches  via perfect  stepping  stones  and  imperfect  (deletable)
corridors.  The  work  presented  herein  generalizes  earlier  work  on  the  application  of  reliability  theory
in  ecology  by allowing  corridors  to  be heterogeneous  (of  non-identical  unreliabilities).  The paper  is a
tutorial  exposition  of  modern  reliability  techniques,  which  formulate  a problem  in  the Boolean  domain,
manipulate  formulas  to achieve  disjointness  of  logically  added  subexpressions  and  retain  statistical  inde-
pendence  of  logically  multiplied  ones,  and finally  reach  a probability-ready  expression  that  is directly
transformed  back  to the  probability  domain.  Several  metrics  are  covered  including  system  unreliabil-
ity,  life  expectancy  (MTTF),  and  component  importance  measures.  An interesting  finding  is that  the  life
expectancy  of a classical  landscape  network  is  more  than  double  that of  a  single  corridor.  Extensions
to  quantification  of  uncertainty  in the  above  metrics  and  to  evaluation  of more  sophisticated  metrics  of
landscape  connectivity  are  also  pointed  out.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Landscape connectivity is a key issue for the survival of a species
in its natural habitat. Tischendorf and Fahrig (2000) point out the
existence of many definitions for landscape connectivity. Notable
among these is the definition of Taylor et al. (1993): “the degree
to which the landscape facilitates or impedes movement among
resource patches” and that of With and King (1997): “the func-
tional relationship among habitat patches owing to the spatial
contagion of habitat and the movement responses of organisms to
landscape structure.” According to Tischendorf and Fahrig (2000),
these definitions accentuate the dependence of movement on land-
scape structure which suggests that connectivity is species and
landscape-specific. Many metrics measuring landscape connectiv-
ity have been suggested (Jordán, 2000, 2003; Goodwin and Fahrig,
2002; Jordán et al., 2003; Kindlmann and Burel, 2008; Vasas et al.,
2009; Baranyi et al., 2011), but notable among these are metrics
directly borrowed from reliability engineering. We  concentrate
herein on these metrics since “reliability theory has an amazing
predictive and explanatory power with a few, very general and
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realistic assumptions (Gavrilov and Gavrilova, 2001).” Our work
extends the seminal work of Jordán (2000), in which he consid-
ered a novel approach for applying reliability theory to a prominent
problem of landscape connectivity concerning ecological-corridor
design. Jordán considered a meta-population landscape graph, in
which points represent patches (habitat patches or stepping stones)
that are perfect and cannot be deleted, and in which edges rep-
resent corridors and can be deleted independently. He made the
strong simplification of assuming that corridor deletion proba-
bilities are equal, though he admitted that “some corridors are
surely more permeable and of greater safety.” He suggested further
development in which different measures of “corridor permeabil-
ity could be created by considering the lengths and the widths
of the corridors and the level of perturbations affecting the cor-
ridors.”

This paper generalizes the work in Jordán (2000) by relaxing
the assumption of identical corridor reliabilities. The paper is also
intended to be a brief tutorial exposition of techniques of sym-
bolic reliability analysis applicable in the study of connectivity of
ecological networks. Study of symbolic and not just numerical reli-
ability allows one to have full information about many reliability
metrics, thanks to the availability of a symbolic expression for sys-
tem reliability R(q) in terms of component or corridor reliabilities
q.
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• Substitution of numerical values for the (generally non-identical)
corridor reliabilities q allows the evaluation of a numerical value
for system reliability R(q). If the component reliabilities q are
known only with uncertainty i.e., if their nominal or mean val-
ues together with their variances are given, then the symbolic
expression R(q) allows a quantification of both the nominal value
and uncertainty in R (Rushdi, 1985a).

• Allowing an explicit time dependence of the corridor reliabili-
ties q leads to a numerical value of the system life expectancy
or its mean time to failure (MTTF) (Krasich, 2009; Rushdi, 2010;
Krivtsov and Yevkin, 2014). This is achieved via the numerical
integration:

MTTF =
∫ ∞

0

R(q(t))dt. (1)

• Assessing the relative importance of each corridor is possible typ-
ically via differentiation (Barlow and Proschan, 1975; Rushdi and
Al-Thubaity, 1993; Kuo and Zhu, 2012; Zhu and Kuo, 2014). For
example, an importance measure for corridor m is

Im = ∂R(q)
∂qm

= R(q|1m)–R(q|0m), (2)

where differentiation is obtained simply as differencing, i.e., by sub-
tracting the following two  instances or restrictions of R(q):

R(q|1m) = R(q)]qm = 1, (3a)

R(q|0m) = R(q)]qm = 0. (3b)

Reliability analysis in this paper consists of the following three-
step strategy (Bennetts, 1975, 1982; Abraham, 1979; Rushdi and Al-
Khateeb, 1983; Rushdi, 1983a,b, 1984a,b; Schneeweiss, 1984, 1997;
Rushdi and Goda, 1985; Rushdi and AbdulGhani, 1993; Rushdi and
Ba-Rukab, 2005a,b):

• formulating the problem logically in the Boolean (switching)
domain, thereby obtaining an expression for the indicator vari-
able of system success therein,

• recasting this expression in the form of a probability-ready
expression (PRE), i.e., one in which ANDed terms are statistically
independent and ORed entities are disjoint,

• transforming the aforementioned expression on a one-to-one
basis into the algebraic (probability) domain, thereby obtaining
a symbolic expression for system reliability.

The above strategy replaces the common policy of pursuing all
stages of problem formulation and manipulation in the probabil-
ity domain. It allows a straightforward formulation followed by an
efficient scalable manipulation. To make the paper self-contained,
we include in Appendix certain useful rules for implementing this
strategy. It might be useful, albeit not necessary, if the reader
also consults one of the many excellent texts available on reli-
ability engineering, such as (Kaufmann et al., 1977; Henley and
Kumamoto, 1985; Barlow and Proschan, 1996; Ebeling, 1997;
Trivedi, 2002; Kuo and Zuo, 2003; Rausand and Hoyland, 2004;
Billinton and Allan, 2005; Misra, 2008). Applications of reliabil-
ity theory to ecological and biological sciences are available in
(Naeem, 1998; Gavrilov and Gavrilova, 2001; Ma,  2010). Since
this paper makes an extensive use of both the conventional and
variable-entered versions of the Karnaugh map, the reader is also
advised to consult some of the references on it (Muroga, 1979; Roth,
1993; Roth and Kinney, 2010; Rushdi, 1983a, 1985b, 1986a, 1987,
1997, 2001; Rushdi and Al-Yahya, 2000, 2001a,b, 2002; Rushdi and
Amashah, 2011; Rushdi and Albarakati, 2013; Rushdi and Alturki,
2015).

The organization of the rest of this paper is as follows. Section
2 lists our assumptions, notation and certain useful nomenclature
in the ecology and reliability domains. Section 3 presents a tech-
nique for the evaluation of the unreliability of an ecological network
when paths to the new habitat patches do not have edges in com-
mon. The unreliability for a small landscape network is symbolically
expressed for the case of heterogeneous corridors and then twice
for the case of identical corridors via (a) a purely additive formula
and (b) an all-reliability formula. The unreliabilities of the over-
all network and its subnetworks are numerically computed and
plotted versus corridor unreliability, wherein the plots exhibit the
typical behavior of coherent systems. The life expectancy of the
classical landscape network considered is found to be more than
double that of a single corridor. Section 4 modifies the technique
of Section 3 by allowing the paths to the new habitat patches to
have a few edges in common. This is achieved by utilizing the
Boole–Shannon expansion in the Boolean domain which resembles
the total-probability theorem in the reliability domain. A discus-
sion follows on the optimal allocation of reliability, which might be
achieved either by constructing new corridors or by enhancing the
reliability of the existing ones. The symbolic unreliability expres-
sions obtained herein have been checked via the exhaustive tests
set by Rushdi (1983b). Section 5 concludes the paper and points out
new directions for further research.

2. Assumptions, notation, and nomenclature

2.1. Assumptions

• The analysis concerns one particular species, henceforth called
the pertinent or concerned species. The analysis does not take
into account any characteristic of the species.

• The pertinent species is in danger of local extinction in a cer-
tain habitat patch called the critical habitat patch. It escapes such
extinction by migrating to a new habitat patch (one out of a few
possible destination habitat patches) through imperfect corridors
and perfect stepping stones.

• Each of the corridors is in one of two states, either good (perme-
able) or failed (deleted or destroyed).

• The migration system is also in one of two  states, either successful
or unsuccessful.

• Destination habitat patches and stepping stones are not suscep-
tible to failure.

• Corridor states are statistically independent.

2.2. Notation

n = number of ecological corridors, n ≥ 1.
Xi = success of corridor i = indicator that the concerned species
successfully migrates through corridor i = a switching random
variable that takes only one of the two  discrete values 0 and 1
(Xi = 1 iff corridor i is permeable, while Xi = 0 iff corridor i is failed).
X̄i = failure or deletion of corridor i = indicator variable for unsuc-
cessful migration of the pertinent species through i, where X̄i = 0
iff corridor i is good, while X̄i = 1 iff corridor i is deleted/destroyed.
The success Xi and the failure X̄i are complementary variables.
X = a vector of n elements, each representing the successful species
migration through a particular corridor i, X = [X1 X2 . . . Xn]T.
S(X) = indicator variable for the successful operation of the migra-
tion system (successful migration of the pertinent species), called
system success.
Pr[. . .]  = probability of the event [. . .].
E[. . .]  = expectation of the random variable [. . .].
qi, pi = reliability and unreliability of corridor i; Both qi and pi
are real values in the closed real interval [0.0, 1.0]. Here, we
deliberately follow the variable definition of Jordán (2000) though
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