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a b s t r a c t

Extended logistic and competitive Lotka–Volterra equations were developed by Eizi Kuno to understand
the implications of population heterogeneity (especially spatial) for population growth. Population het-
erogeneity, defined as the presence of individuals in some patches of population and not others, is the
resulting expression of a number of processes, including dispersal, habitat heterogeneity and searching
behaviour. Kuno’s models allow the effect of population heterogeneity (thus defined) on a population
at equilibrium to be accounted for without using multi-patch models. This paper demonstrates this for
the first time using numerical simulations and presents a more complete mathematical derivation of his
models. An extension of Kuno’s equations to model predator–prey scenarios with heterogeneity in the
prey population is also developed. Analysis of this predator–prey case shows that a patchy distribution of
prey facilitates their stable coexistence with predators. This paper has broad implications for ecological
modelling because it shows how the effects of a number of population processes, including dispersal, are
reflected in the density of populations at equilibrium. Therefore, by adjusting the equilibrium solutions of
models, the effects of a number of processes are captured without representing the processes themselves
in an explicit way.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Crowding is a biological process that has been shown to effect
competitive processes such as the coexistence and exclusion of
multiple interacting species (Kuno, 1988). At a basic level, crowd-
ing refers to the way in which some areas of habitat contain more
individuals than others. As such, crowding is synonymous with
the form of population heterogeneity called spatial heterogene-
ity, which arises as the result of a number of processes including
dispersal, resource availability and genetics (Clobert et al., 2009;
Pickett and Cadenasso, 1995). As such, a measure of crowding can
be regarded as a surrogate measure of these processes, since it
captures their results. Intra-specific mean crowding, as defined by
Lloyd and expressed by the notation m*, is the average number
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of animals per other animal of the same species per patch (Lloyd,
1967), and is given by the formula

m∗ =

Q∑
q=1

(Nq − 1)Nq

Q∑
q=1

Nq

, (1)

where Nq is the number of individuals in the qth patch of habitat.
A simple linear model derived by Iwao,

m∗ = a + bm, (2)

describes the relationship between m* and the mean number of
individuals (m) per patch of habitat (Iwao, 1968; Lloyd, 1967).
Though often referred to as a linear regression, (2) can equally be
viewed as a linear functional relationship (Waters et al., 2014).2

2 The interpretation of the parameters a and b may differ depending on whether
(2) is viewed as a function or a statistical model. In particular, the value and inter-
pretation of the parameter a requires further research. Waters et al. (2014) have
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Table 1
Values of a and b for animals with different spatial distributions (Iwao, 1968; Kuno,
1988).

Distributional assumptions b a

Uniformly distributed individuals 1 −1
Distribution of individuals is regular (underdispersed) but not

uniform
0–1 −1

Poisson distributed individuals 1 0
Poisson distributed clusters of individuals 1 >0
Contagiously (negative binomially) distributed individuals >1 0
Contagiously distributed clusters of individuals >1 >0

This has informed the incorporation of Iwao’s model into linear
differential equation models (Iwao, 1968; Waters, 2012). A unique
feature of Iwao’s linear model is that its intercept (a) and slope (b)
parameters have been demonstrated to take on particular values
when individuals are distributed according to the uniform, Pois-
son and negative binomial distributions (see Table 1) (Iwao, 1968;
Kuno, 1988). Kuno developed a framework of generalised com-
petitive equations using the parameters a and b of Iwao’s linear
relationship as constants accounting for the effect of spatial hetero-
geneity on population dynamics, and showed that patchy spatial
distributions are required for the competitive coexistence of two
species (Kuno, 1988). This work has been cited rarely despite its
potentially broad application (19 citations in 26 years, according
to a Google Scholar search on 23 July 2014). A feature of Kuno’s
paper is that it does not show how its equations were derived,
and gives the impression that some incorrect algebraic substitut-
ions were utilised (for example, substituting the total number of
individuals N for the mean number of individuals with little expla-
nation). There are also some typographical errors in the paper. Here,
a more detailed mathematical treatment of Kuno’s work is pro-
vided. The ecological assumptions, implications and limitations of
Kuno’s work are clarified, and his basic idea is extended beyond
the competitive scenario to predator–prey scenarios. As a result,
Kuno’s novel piece of work, which has thus far been undervalued,
is promoted.

2. Derivation of the basic model

2.1. Background

The logistic model is one of the most influential models in math-
ematical biology and is featured in most introductory textbooks
as an improvement on the exponential model for describing the
growth of populations (Allman and Rhodes, 2004; Murray, 2002;
Zill and Wright, 2009). As commonly formulated, however, the
logistic growth model behaves unrealistically in many situations.
The logistic model describing the growth of a population of N indi-
viduals is most commonly formulated as

Ṅ = rN
(

1 − N

K

)
, (3)

where Ṅ is the derivative of population size with respect to time,
r is the intrinsic reproductive rate of the population and K is the
carrying capacity (Gabriel et al., 2005; Kuno, 1988, 1991b). Carry-
ing capacity is interpreted as the maximum population size that
can be supported by the environment (Zill and Wright, 2009). This
formulation of the logistic model produces biologically unrealistic
results in many situations. The most notably unrealistic prop-
erty of (3) is that the population increases indefinitely when the

suggested that values of a > 0 are poorly supported, but this is only the beginning
of a conversation and the matter cannot be considered closed. For this reason, we
continue to use generally accepted interpretations of a and b in this manuscript,
until this situation is resolved.

reproductive rate is negative, which occurs when the initial value is
greater than K (Levin’s paradox) (Gabriel et al., 2005; Kuno, 1991b;
Mallet, 2012). A further example of the limitations of this formu-
lation is that it assumes homogeneous mixing – that is, that all
individuals have the same number of mates. This is equivalent to
assuming that individuals are uniformly distributed in their envi-
ronment (Kuno, 1988). It is possible to deal with the first problem,
Levin’s paradox, by using Verhulst’s older form of the logistic equa-
tion (Gabriel et al., 2005; Kuno, 1991b),

Ṅ = rN − hN2, (4)

where h is a positive constant expressing intrinsic limitations on
population growth (Gabriel et al., 2005). Verhulst’s form of the
logistic growth model is preferred by Kuno (1991a), and is used
as the basis of his modelling to resolve the unrealistic assumption
of an homogeneously distributed population.

A patch is a subdivision of a population that can be defined
either based on size or area. Patches defined based on area are sim-
ply divisions of a population’s habitat along geographical lines. A
drawback of this approach is that it is essentially a geographically-
rather than a biologically-meaningful definition of a patch: an area
in an animal’s territory with no animals in it is just as much a
patch as an area with three mating pairs or a single individual. An
alternative approach is to define patches based on size, that is the
number of individuals comprising a biologically-meaningful unit.
For example, one study defined a patch as a location where the
number of individuals exceeded the average by one standard devi-
ation (Stabeno et al., 1996). Another study used the number of trees
per stand to describe the patch structure of forests (Woodbridge
and Detrich, 1994). Iwao expressed the same idea in distinguish-
ing clump size and clump area (Iwao, 1972). Under this approach, a
discrete group of individuals interacting in a biologically significant
way amongst themselves but not with other groups of individuals
comprises a patch. This effective biological independence arises
when between-patch processes such as dispersal have equilibrated,
such that the state of the system is almost perfectly described only
by within-patch processes such as reproduction. The assumptions
of a patchy habitat defined on the basis of patch size rather than
patch area, and the dominant influence of within-patch rather than
between-patch processes, are fundamental to illustrate the rela-
tionship between mean crowding and (4) and the implications of
this relationship.

Let N = ∑Q
q=1Nq such that the habitat of the population is

divided into Q patches of size Nq. Applying the logistic equation
to the dynamics of each patch and summing over all patches gives
the total state of the population as

Ṅ =
Q∑

q=1

(rNq − hN2
q). (5)

Applying this principle to (5) and dividing through by N, (5)
becomes

1∑Q
q=1Nq

Ṅ = r − h

∑Q
q=1N2

q∑Q
q=1Nq

. (6)

In (6)
∑Q

q=1N2
q /

∑Q
q=1Nq is equal to m* + 1, where m* is intra-

specific mean crowding (Hanski, 1981; Kuno, 1988; Lloyd, 1967).
Because of Iwao’s mean crowding versus mean density relationship,
given in (2), it is possible to substitute m* + 1 = a + bm + 1 into (6) to
give

1∑Q
q=1Nq

Ṅ = r − h(a + bm + 1), (7)
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