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a  b  s  t  r  a  c  t

A  three-step  data  assimilation  approach  is proposed  in this  paper  to enhance  crop  model  predictive
capacity  in various  environmental  conditions.  The  most  influential  parameters  are  first  selected  by  global
sensitivity  analysis  and then  estimated  in  a Bayesian  framework.  The  posterior  distribution  of  the  estima-
tion  step  is then  considered  as  prior  information  for  data  assimilation.  In  this  last  step,  a filtering  method
is  sequentially  applied  to update  state  and  parameter  estimates,  with  the  purpose  of  improving  model
prediction  and  assessing  the  prediction  uncertainty.

The  estimation  and  assimilation  steps  are  based  on  the  Convolution  Particle  Filtering,  whose  features
make  it  particularly  suitable  for data  assimilation  in  crop  models:  the  method  is  easy  to adapt  to any  gen-
eral  state-space  models  (both  probabilistic  and  deterministic  ones)  with  very  few  tuning  parameters,  no
approximation  needs  to be  made  for nonlinear  models,  and  it remains  robust  in  situations  with  irregular
and  sparse  datasets.

With  the  aim  of illustrating  the  robustness  and  adaptive  capacity  of the  proposed  approach,  its  pre-
dictive  performance  is  evaluated  with  two  crop models,  the  STICS  model  for  winter  wheat  and  the  LNAS
model  for sugar  beet.  The  two  models  are  built with  different  perspectives.  STICS  is deterministic  and
provides  a very  detailed  description  of  the  ecophysiological  processes  driving  crop–environment  inter-
actions,  while  LNAS  is designed  to describe  only  the essential  ecophysiological  processes  of  plant  biomass
budget  in  a  probabilistic  framework,  so as to  put  emphasis  on the  uncertainty  assessment.

In  order  to evaluate  the  approach,  five  datasets  obtained  in  various  experimental  conditions  were  used
for the  sugar  beet  LNAS  model,  and  three  datasets  for the  winter  wheat  STICS  model.  In both  studies,
one  dataset  was  used  for  a priori  parameter  estimation  and the  others  were  used  to  test  the model
predictive  capacity,  both  with  and  without  data  assimilation.  The  CPF-based  data  assimilation  approach
showed  promising  predictive  capacity  and  provided  robust  and  reduced  credibility  intervals  in various
test  configurations  (different  years  for calibration  and  prediction  by  assimilation,  different  experimental
sites,  different  cultivars,  different  crop  densities,  different  levels  of water  stresses),  which  suggests  that
the  combination  of  such  an approach  with  both  types  of  crop  models  (simple  probabilistic  model  or
complex  deterministic  model)  is quite  reliable  and  can  therefore  be  regarded  as  a  potential  tool  for  yield
prediction  applications  in  agriculture.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

To improve the predictive capacity of plant growth models
in various environments has been a long-standing challenge. A
common idea is to enrich the mechanistic description of plant
ecophysiology (Yin and Struik, 2010). With this purpose, partic-
ular efforts have been made to take into account abiotic stresses
regarding temperature (Fowler et al., 2003), water (Tardieu,
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2003), or Nitrogen (Bertheloot et al., 2011). Some advanced agro-
environmental models even aim at addressing the full diversity of
environmental variations, like STICS (Brisson et al., 2003) or APSIM
(Keating et al., 2003). However, the complexity of the interaction
between processes can make the task rather difficult, particularly
in the case when several stresses are involved (Mittler, 2006). As
described by Yin and Struik (2010), the tendency is still to com-
plicate the mechanistic description of biophysical processes, even
by linking ecophysiology to “omics” sciences as an attempt for
the full comprehension of the regulatory networks from which
plant robustness and plasticity is supposed to emerge (Hirai et al.,
2004). This direction is clearly leading the way to great advances
in research, especially in extending our understanding of how
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genotype leads to phenotype (Buck-Sorlin and Bachmann, 2000;
Hammer et al., 2006; Yin and Struik, 2010).

However, the more complex the models are, the more trouble-
some their parameterization and the assessment of the estimate
uncertainty become (Ford and Kennedy, 2011; Chen and Cournède,
2012), specifically due to the costly experimentation and the great
number of unknown parameters to consider. Likewise, local envi-
ronmental conditions (in terms of climatic and soil variables, as well
as biotic stresses) and initial conditions in specific fields are also
very delicate to characterize. Consequently, it may  raise important
issues regarding the identifiability of the parameters, the assess-
ment of the confounding noises and the propagation of uncertainty
and errors related to both parameters and inputs of these dynamic
models. Failing to address these issues may  finally result in poor
predictions of plant–environment interactions in real situations,
that is to say the opposite of the pursued objective.

Under these circumstances, an alternative pragmatic approach
has been proposed for the purpose of crop growth prediction in
specific farming conditions: the combination of a simplified crop
model and sequential data assimilation technique to update the
model variables and/or parameters from observed data in the early
stages of growth (Bouman, 1992; Delécolle et al., 1992; Maas, 1988;
Moulin et al., 1998). This approach was particularly studied allow-
ing the progress in deriving biophysical and biochemical canopy
state variables from optical remote sensing (Dorigo et al., 2007),
which may  potentially give way to crop production forecast at large
scales (Moran et al., 1997) and thus be considered as a tool for
decision support (Gabrielle et al., 2002; Houlès et al., 2004).

The conventionally used strategy is to consider reference mod-
els like SUCROS (Guérif and Duke, 1998, 2000; Launay and Guérif,
2005) or CERES (Dente et al., 2008) as the framework to integrate
the remotely sensed observations. Several methods were devel-
oped in this perspective (see Dorigo et al., 2007 for a review). The
forcing method consists in replacing a state variable of the model by
the observed data, for instance the leaf area index (LAI) in (Delécolle
et al., 1992; Dente et al., 2008). One important drawback is that gen-
erally a considerable part of the model state variables cannot be or
are not observed and thus cannot be updated simultaneously at
each time step. Moreover, the method does not take into account
the observation error, which should not be neglected consider-
ing the general lack of accuracy of remote sensing data. Another
possibility is to use the available observation data to recalibrate
some model parameters and/or initial states that may  presumably
vary with local conditions (Bouman, 1992; Guérif and Duke, 2000;
Launay and Guérif, 2005). The main limitation of this method is
that it requires sufficient data to perform the calibration, while we
would prefer to benefit directly from the data assimilation tech-
nique based on the early growth stages with regular updates when
observation data are available. Besides, the global approach of this
calibration step usually fails to capture and to maintain the system
dynamics.

In other research domains, data assimilation problems have
been commonly reformulated and studied with a Bayesian prob-
abilistic perspective, which allows the sequential estimation of
model states and parameters simultaneously (Van Leeuwen and
Evensen, 1996; Jazwinski, 1970) in the framework of generalized
state-space models. It permits us to circumvent the above issues.
In the light of these former applications, the first attempt to adapt
a relatively simple crop model into this perspective was  made by
Makowski et al. (2004). The method implementation relies on a
probabilistic framework of crop model which is used to derive
prior distributions of the model state variables and parameters at
time steps with available observations while taking into account
uncertainty in model prediction. Conditionally to the experimental
observations and the observation model error, posterior distribu-
tions are deduced according to Bayes’ law. An updated prediction

of the model state variables can thus be inferred. The procedure is
repeated at all measurement dates. Classical filtering methods used
for this purpose are Ensemble Kalman Filter (see (Evensen, 2006)
for the general presentation of the method, or (Jones and Graham,
2006) for an application in the context of crop models) or Particle
Filter (see for example Kitagawa, 1996 for the general concepts or
Naud et al., 2007 for an application in the context of crop models).

Nonetheless, one of the difficulties to implement this approach
comes from the fact that it requires the plant growth model
described in a probabilistic framework, as a hidden Markov model
(Cappé et al., 2005). The classical and complex crop models (like
STICS Brisson et al., 1998, APSIM Keating et al., 2003, CERES Jones
and Kiniry, 1986, etc.) were not built in this perspective and their
stochastic reformulation is therefore far from straightforward: the
large number of involved processes may  potentially lead to a dras-
tic increase in the number of parameters to model process errors.
One simple solution to circumvent this problem is to only consider
observation errors (Guérif et al., 2006), but it may hinder a proper
update of hidden state variables.

In this context, the objective of this paper is to propose an alter-
native approach to crop yield prediction with data assimilation,
which would further be robust, efficient and adapted to the spe-
cific characteristics of crop models (nonlinear dynamics, restricted
and irregular observation data).

Although the literature on filtering methods is considerably
rich (Extended, Unscented, Ensemble Kalman Filter or Particle Fil-
ter, etc.), the Convolution Particle Filter (CPF) (Campillo and Rossi,
2009; Rossi and Vila, 2006) which can be regarded as a general-
ization of the regularized particle filter proposed by Musso and
Oudjane (1998), stands out for its attractive features regarding
the challenges raised by parameter estimation and data assimi-
lation of crop models. Firstly, the method is not only rather easy
to adapt (with very few tuning parameters), but also robust in
terms of convergence since it circumvents the classical problem
of potential sample degeneracy in particle filters. This property is
valuable in real situations for which irregular or heterogeneous
field data are available. Moreover, it does not rely on the Gaussian
assumption of distributions as the Kalman Filter-based algorithms,
and is thus adapted to the potentially highly nonlinear plant/crop
models. When these models are formalized as general state-space
hidden Markov models, CPF can achieve a proper evaluation of
model uncertainty. Another interesting feature is that it works with
deterministic models as well, which makes the method straightfor-
wardly adaptable to the classical and widely used crop models.

Therefore, in this paper, a three-step data assimilation approach
based on the Convolution Particle Filtering is proposed and tested
based on real experimental data. The most influential parameters
are first selected and estimated in a Bayesian framework from a
calibration data set. The obtained estimation along with the eval-
uated uncertainty is considered as prior information for the data
assimilation step. With the purpose of improving model prediction
and assessing the prediction uncertainty, the filtering method is
sequentially applied again to update state and parameter estimates
on a second data set.

To illustrate the robustness of the proposed data assimilation
approach, we applied it to two  models of different types. The first
one is the LNAS (Log-Normal Allocation and Senescence) model for
sugar beet, describing biomass budget during crop growth, with
the particularity of being fully built in a probabilistic perspective
(Chen and Cournède, 2012; Cournède et al., 2013) for the purpose
of data assimilation. Based on the analysis of Delécolle et al. (1992),
the model describes only the major ecophysiological processes (at
least in terms of Carbon economy): biomass production, biomass
allocation, senescence and leaf surface development. Such a simpli-
fication allows an easier representation of the model errors without
increasing significantly the number of parameters.
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