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a  b  s  t  r  a  c  t

Using  a model  of  resource  acquisition,  we  studied  species  competition  in  a case  where  resources  limit
population  growth.  Our  model  is based  on calculations  of the  distribution  of  individuals  of  single  or
multiple  species  over consumed  resources.  Calculations  show  that,  as  equilibrium  is  reached  in purely
resource  competitive  systems,  the  density  of  resources  is lowered  to  the  lowest  sustainable  level,  directly
leading to  low  levels  of fitness  among  species.  In the  case  of competition  between  species  with  different
lowest  sustainable  levels,  the  density  of  the  more  successful  must  be limited  by  some  cause  other  than
the  resource  in question  for  all species  to coexist.  We  explore  two cases  of such  coexistence.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Competition for resources between subjects of the same species
and between species is one of the most important factors in ecology
and evolution. With competition, many evolutionary and ecologi-
cal questions can be addressed. The ability of species to compete
increases their chance of survival in the existing local ecosystems
(Begon et al., 2005) and on the global scale influencing evolution
directly (Darwin, 1859). Many numerical models are used for mod-
eling the competition, such as the basic Lotka–Volterra equations
(Volterra, 1931; Lotka, 1932) describing predation and competition,
the Monod model (Monod, 1942, 1950; Herbert et al., 1956) used
to describe different species competing for the same resources and
Droop’s model describing the growth of populations where nutri-
ent quantities are growth limiting factors (Droop, 1974, 1975). All
of these models have been widely used and improved for more real-
istic use in specific cases: for example, to study competition under
multiple nutrient limitation (Tilman, 1982; Cherif and Loreau,
2010) and stability of ecological systems (Tilman, 1996; Huisman
and Weissing, 1999; Lehman and Tilman, 2000; Mougi and Kondoh,
2012). The above models use the density of competing species and
resources as observed/modeled variables and describe the dynam-
ics of the system by coupled differential equations between them.
Co-existence and biodiversity has been studied as a function of
number of limiting resources (Tilman, 1982), temporal and spacial
gradient of parameters (Tilman, 1999; Lehman and Tilman, 2000)
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or as a consequence of chaotic behavior of the models for certain
sets of parameters (Huisman and Weissing, 1999, 2002).

Alternatively there is a growing interest in individual-based
models, where individuals are followed and their behavior is
modeled depending on external parameters (DeAngelis and Mooij,
2005; Grimm et al., 2006; Railsback and Grimm, 2011; Martin et al.,
2013). This is especially suitable for modelling small populations
where we can follow individuals and their properties and consump-
tion. Monte-Carlo methods are used to study system evolution
under different circumstances and population survival probability
can be studied.

In this article we  propose a model that combines part of the ben-
efits from both approaches. In this model we  follow the temporal
evolution not only of a population density but also the distribution
of the population over successfully consumed resources. In this
way, we can also take into account the fitness of the population.
Information on fitness gives us further understanding of species
competitiveness in the ecosystem and possible vulnerabilities to
or advantages from ecosystem changes. We  start by studying the
temporal behavior of a simple one-species system and proceed to
more complicated systems involving more species and resources.

2. Method

In presented model we follow the distribution of a popula-
tion over resource consumption. Since sufficient consumption is
needed for survival and even more for successful reproduction,
this can be used as a measure of fitness (Begon et al., 2005). We
take into account that only a limited amount of resources can be
consumed and accumulated (Tilman and Kilham, 1976), although
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luxury intake is possible. Another important point is that consumed
and accumulated resources are also used over time; therefore,
only consumption during a certain relevant time window (RTW)
is important for the current fitness of individuals. Throughout this
article the most recent time window is used as RTW. RTW should
be chosen long enough to account for the possibility of the fully
fed individual to starve to death in case of lack of resources and
on the other side to allow for the full starvation-recovery all the
way to the excess accumulation. Although different parameters
are defining fitness sufficient resource intake is crucial for speci-
men  survival and reproduction ability and we use the amount of
consumed resources over the RTW for a measure of fitness in this
article.

We mark the amount of resources consumed by an individual
over RTW with K. To describe the fitness of the entire population,
we can use the density distribution of individuals over K (S = S(K)).
In the model, used population parameters are minimum resource
consumption Ks that still allows for survival of the individual,
although the fitness in this case is too low for reproduction; Kr is the
minimum resource consumption needed for successful reproduc-
tion of the individual, and Kmax the estimated maximum possible
consumption of resources over the RTW in case the resource is
abundant. Reproduction rate and decay rate of the species are
K dependent, and we use reproduction rate sr to describe the
reproduction of individuals with K > Kr, while the others do not
reproduce. All the individuals with consumption below Ks die, and
we use sd to describe the death rate of the others caused by aging
and external factors.

Mathematically, the problem of density distribution with ‘for-
getfulness/use of accumulated resources’ is not easy to solve;
therefore, we use a distribution over N discrete values of the
amount of resource consumed (K) over the last RTW. In this way we
use time steps of �t  = RTW/N, and in every time step an individual
either consumes �K = Kmax/N amount of resource or it does not. The
probability (P) of an individual finding and consuming the resource
depends on resource density F(t) and on the space-covering speed
of individual v – a species – dependent parameter describing the
amount of space (surface or volume) an individual can cover over
the time. If we simply assume that finding a resource is sufficient
for its consumption, the density of individuals that do not find the
resource in �t  can be calculated by integration of dS = −vS(t)F(t)dt
over �t.  Here we use S as the density of the individuals that have
not yet consumed the resource. For those that have already con-
sumed the resource we, assume that they digest for the rest of the
�t. Now the probability of finding and consuming �K  in the time
step can be calculated as:

P = [S(t) − S(t + �t)]
S(t)

. (1)

Resource density F(t) depends on resource growth/inflow,
resource decay/outflow and resource consumption by individuals.
The temporal evolution of F can be calculated by integration of
dF = [fg − fdF(t) − �KvS(t)F(t)]dt. The growth term fg depends on
the particular resource and can depend on density (reproduction,
growth) or on other resources. Since we are interested in cases
where competition takes place and most of the resources are in
quasi-equilibrium, we simply take it as a constant. We use linear
approximation fdF(t) for the decay/outflow term. This is useful
because it also limits the growth of resources to the values below
Fmax = fg/fd. In our calculation most of the resource decrease is
through consumption by the species being studied (the last term
in the equation), and we can expect fdF(t) to be small. We  can
generalize our equations for multiple species and resources to
coupled differential equations:

dSj
i
= −vi,jS

j
i
(t)Fj(t)dt (2)

Fig. 1. Step diagram of species density calculation.
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Here index i indicates species and index j resource. These equations
can be integrated over a selected time unit �t,  and the probabil-
ity for an individual to consume the resource can be calculated.
Here we  assumed v to be K independent and use Sj

i
to be the full

density of the species (initial Sj
i
=
∑

K Si(K)), but the equations can
also be expanded to use S for different K. Resource density F is con-
tinuous function of time and is initialized to the final value from
the previous step. The equations as stated above are for limiting
resources. When two resources (j′, j′ ′) can be exchanged, single dis-
tribution Sj′ j′′

i
should be used and will account for consumption of

all exchangeable resources. Here we should point out that other
models for the probability of resource consumption can be used
with the rest of the calculation unchanged.

With probability calculated, we  can calculate the next iteration
of consumed resource distribution. This is performed in multiple
steps, as shown in diagram in Fig. 1.

First, we  calculate the density distribution for RTW + �t  (time
interval of (N + 1)�t):

S′(K, t) = PS(K − �K,  t) + (1 − P)S(K, t). (4)

Now we must transform it back to distribution over RTW. For
this we  need to know for every S(K) the part of it that consumed
�K of resource RTW ago – c(K). By subtraction of this part, we again
have the distribution over the most recent RTW (last N�t):

S′′(K, t) = (1 − c(K))S′(K, t) + c(K + �K)S′(K + �K, t). (5)

Finally, we  account for those born and those that died:

S(K, t + �t) = (1 − d(K))S′′(K, t) + b(K, t). (6)

The death rate here depends on K (those with K < Ks starve to
death). In this paper we do not count the death rate due to exter-
nal factors as K dependent, but implementation of this would be
straightforward. In the case of multiple resources, we assume no
correlation between consumption of different resources and we
calculate the deaths through lack of resources accordingly. The
birth rate, on the other hand, depends on the subjects with K > Kr

giving us the full growth of b = sr
∑

K>Kr
S′′(K, t). Again, no corre-

lation is assumed between different resource distributions, and in
the case of multiple resources, we  take into account that fitness
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