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a  b  s  t  r  a  c  t

This  study  employs  spatial  filtering  of occurrence  data  with  the aim of  reducing  overfitting  to samp-
ling  bias  in ecological  niche  models  (ENMs).  Sampling  bias  in  geographic  space  leads  to  localities  that
may  also  be  biased  in  environmental  space.  If  so, the model  can overfit  to those  biases.  As  a prelim-
inary  test  addressing  this  issue,  we  used  Maxent,  bioclimatic  variables,  and  occurrence  localities  of  a
broadly  distributed  Malagasy  tenrec,  Microgale  cowani  (Tenrecidae:  Oryzorictinae).  We  modeled  the  abi-
otically  suitable  area  of  this  species  using  three  distinct  datasets:  unfiltered,  spatially  filtered,  and  rarefied
unfiltered  localities.  To  quantify  overfitting  and  model  performance,  we calculated  evaluation  AUC,  the
difference  between  calibration  and  evaluation  AUC  (=AUCdiff),  and  omission  rates.  Models  made  with  the
filtered  dataset  showed  lower  overfitting  and  better  performance  than  the  other  two  suites  of  models,
having  lower  omission  rates  and  AUCdiff, and  a higher  AUCevaluation. Additionally,  the  rarefied  unfiltered
dataset  performed  better  than  the  unfiltered  one  for  three  evaluation  metrics,  likely because  the larger
one  reinforced  the biases.  These  results  indicate  that spatial  filtering  of  occurrence  localities  may  allow
biogeographers  to produce  better  models.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Ecological niche models (ENMs) are a correlative approach
aiming to approximate the abiotically suitable area of a species
by comparing environmental conditions at localities where the
species occurs with the overall conditions available in the study
region (see Peterson et al., 2011; Anderson, 2012 for terminol-
ogy). The increased prevalence of online databases of occurrence
localities and climatic variables has resulted in an increase in
the production of ENMs (Hijmans et al., 2005; Kozak et al.,
2008). Although correlative ENMs are used widely in the fields
of ecology, evolution, and conservation biology, their mainstream
acceptance has outpaced methodological research and refine-
ment.

Here, we study one area needing methodological improvement:
the effect of sampling bias. Frequently, researchers sample easily
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accessible areas (i.e., near major roads or towns), leading to geo-
graphic clusters of localities (Hijmans et al., 2000; Kadmon et al.,
2004; Reddy and Dávalos, 2003). These sampling biases artificially
increase spatial auto-correlation of the localities. Such a situa-
tion can cause the model to overfit to environmental biases that
correspond to these influences in geographic space. Overfitting
occurs when a model fits too tightly to calibration data, limiting
the model’s ability to predict independent evaluation data. Elimi-
nating artifactual clusters of localities is also important for model
evaluation, since calibration localities that are next to evaluation
localities lead to inflated values of performance (Hijmans, 2012;
Veloz, 2009).

In this study, we  aim to reduce the effect of sampling bias by
spatially filtering the occurrence dataset, which should reduce
the degree of overfitting in the model. Ideally, when information
quantifying sampling effort exists (e.g., via a target group), it can be
used in model calibration to correct for sampling bias (Anderson,
2012; Phillips et al., 2009). However, researchers frequently do not
have access to such information. In contrast, the method applied
here can be employed generally. Several studies have used filtering
(=thinning) techniques (Anderson and Raza, 2010; Carroll, 2010;
Pearson et al., 2007; Veloz, 2009) to reduce the effects of sampling
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biases, but we know of none that have explicitly tested whether this
method improves the performance of ENMs (but see Varela et al.,
2013 for an implementation with a virtual species). If it does, an
ENM made with the filtered dataset should show lower overfitting
and higher performance in predicting independent evaluation data.

2. Methods and materials

2.1. Occurrence and environmental data

Madagascar is home to four endemic radiations of extant ter-
restrial mammals, including nesomyine rodents, lemurs, euplerid
carnivorans, and tenrecs. The latter shows considerable morpho-
logical variation and forms an extraordinary adaptive radiation
(Olson and Goodman, 2003), with the most taxonomically diverse
genus being the shrew tenrecs (Microgale spp.; 22 currently rec-
ognized extant species; Goodman et al., 2006; Olson, 2013; Olson
et al., 2009; Soarimalala and Goodman, 2011). Perhaps the most
common, widespread, and well-documented species, Cowan’s
shrew tenrec (Microgale cowani) is found throughout what remains
of Madagascar’s humid forests at elevations ranging from 530 to
2500 m (Soarimalala and Goodman, 2011). This swath spans several
different vegetational zones, including forests ranging from low-
land to upper montane, as well as ericoid alpine formations above
the forest line. This species appears to be a generalist among shrew
tenrecs and accounts for over one-fifth of Microgale specimens in
European and North American museums (Olson, unpub.). Because
its range and habitat requirements are relatively well known, M.
cowani represents a suitable species for the current study.

Occurrence localities were compiled from field collections and
associated notes, examination of museum specimens, and litera-
ture (Fig. 1, appendix). The environmental data were obtained from
WorldClim.org (Hijmans et al., 2005; at 30 sec. resolution). These
19 bioclimatic variables employed reflect aspects of temperature
and precipitation and have been used successfully for niche models
of small non-volant montane mammals (e.g., Jezkova et al., 2009;
Davis et al., 2007). We  delimited a custom study region for each
model, specifically by drawing a rectangle around localities and
adding a 0.5◦ buffer (Anderson and Raza, 2010; Barve et al., 2011;
see Fig. 1.).

2.2. Experimental design

As a first exploration, we built models using Maxent version
3.3.2k. Maxent is a presence-background algorithm that compares
occurrence localities with a sample of background pixels to create
a prediction of suitability (Phillips et al., 2006; Phillips and Dudík,
2008). Maxent has performed well in comparison with other tech-
niques and is commonly used (Elith et al., 2006; Wisz et al., 2008)
but sensitive to sampling biases (Anderson and Gonzalez, 2011;
Phillips et al., 2009). In addition to sampling bias, two  other issues
can affect overfitting in niche models: correlations among environ-
mental variables and the level of model complexity. To simplify the
current experiment, we held those factors constant. Specifically, we
used all 19 bioclimatic variables and employed default Maxent sett-
ings for the given sample size: feature class (linear, quadratic, and
hinge) and regularization multiplier value (1). We  note, however,
that Maxent employs regularization to reduce complexity; because
of this, not all variables are necessarily included in the final model
(Phillips and Dudík, 2008).

For filtering, we randomly removed localities that were within
10 km of one another, keeping the most localities possible. The
10 km distance was chosen based on the high spatial heterogene-
ity of the mountains in Madagascar, and the same distance has
been used in previous studies in mountainous areas with high

geographical heterogeneity (Pearson et al., 2007; Anderson and
Raza, 2010). This distance was not chosen to approximate the
species’ dispersal capabilities, but rather to reduce the inherent
geographic biases associated with collection data. There were 57
unique localities before filtering and 31 unique localities after filter-
ing (see Fig. 1). We  used the Geographic Distance Matrix Generator
version 1.2.3 to calculate the geographic distance between each
pair of localities (Ersts, 2012). For each cluster of localities less than
10 km apart, we determined the maximum number of localities
that could be retained. When more than one co-optimal solution
existed for a given cluster, we selected one randomly. To test for the
expected effect of reducing sampling bias versus simply the effect
of sample size, we  also randomly rarefied the unfiltered dataset
to match the number of localities of the filtered dataset. Hence,
we used three different datasets for modeling: unfiltered, filtered,
and rarefied unfiltered. To explore the possibility that the spatial
filter used here removed localities with novel environmental con-
ditions, we  plotted the values of annual mean temperature and
annual mean precipitation at each locality.

An overfit model has an overly complex relationship between
the occurrence localities of a species and associated environmental
variables (Peterson et al., 2011). To quantify overfitting as well as
general model performance, we implemented a variation of k-fold
cross-validation. To provide strong tests, we  divided the locali-
ties geographically into k = three bins (see Fig. 1). Each bin was
constructed to contain approximately the same number of local-
ities but occupy different portions of geography (Radosavljevic
and Anderson, 2013). This allowed the models to be evaluated
on spatially segregated (spatially independent) evaluation data,
avoiding the inflation of evaluation metrics due to spatial auto-
correlation between calibration and evaluation datasets (Hijmans,
2012; Veloz, 2009). Such evaluations also are necessary for evalu-
ating model transfer across space or time (e.g., for climate change
studies; Anderson, 2013). In each iteration, the models were cali-
brated using k − 1 bins and evaluated on the withheld bin (Fielding
and Bell, 1997; Peterson et al., 2011). This was  done until all bins
were used once for evaluation (i.e., three iterations in total). By
using custom study regions for each iteration, Maxent sampled
background data for the environmental variables from only the
regions corresponding to the bins used during calibration (fol-
lowing Phillips, 2008; Radosavljevic and Anderson, 2013). These
methods allowed quantification of overfitting and performance
after transfer (Peterson et al., 2011; Araújo and Rahbek, 2006;
Bahn and McGill, 2013). The model from each iteration was  then
projected to the full study region to allow for evaluation and visu-
alization.

We evaluated overall model performance via threshold-
independent and threshold-dependent measures that assess
various aspects of performance and overfitting. The threshold-
independent metrics derive from the Area Under the Curve (AUC)
of the Receiver Operating Characteristic plot, a rank-based mea-
sure of overall discriminatory ability of the model. Accordingly,
the AUC calculated on evaluation localities (AUCevaluation) con-
stituted our measure of overall model performance. The other
threshold-independent measure was AUCdiff: AUCcalibration minus
AUCevaluation. The smaller the difference between the two, the lesser
the overfitting present in the model (Warren and Seifert, 2011).
Because comparisons between AUCs calculated using presence-
background data are only valid when study regions are identical,
we calculated AUCs over the entire study region. For each iteration
of each treatment, we obtained AUCdiff and AUCevaluation, and then
averaged the values across the three geographic bins.

Complementarily, we  employed two  threshold-dependent
measures: omission rates based on two threshold rules (10% cal-
ibration omission rate and lowest presence threshold, LPT = 0%
calibration omission rate; Pearson et al., 2007; =minimum training



Download English Version:

https://daneshyari.com/en/article/4376003

Download Persian Version:

https://daneshyari.com/article/4376003

Daneshyari.com

https://daneshyari.com/en/article/4376003
https://daneshyari.com/article/4376003
https://daneshyari.com

