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a  b  s  t  r  a  c  t

Emergy  evaluations  most  often  rely  on  point  estimates  for  important  energy,  material  and  solar  trans-
formity  (or  more  generally  unit  emergy  values,  UEVs)  parameters.  For  emergy  science  to  continue  its
advancement  as  a tool  for assessing  energy  and  environmental  sustainability,  it  needs  to  include  esti-
mates of  uncertainty  surrounding  emergy  budgets  so  that  statistical  confidence  can  be  assessed.  Here,
Monte Carlo  simulation  was  used  to  analyze  the  effect  of  uncertainty  in  the  estimates  of  energy,  material
and UEVs  of  system-sources  (e.g.,  sunlight,  evapotranspiration,  fuel,  fertilizer)  on  the  uncertainty  of  the
UEV  of  the  system-yield.  Eight  unique  corn  and  wheat  production  systems,  reported  in  the  literature,
provided  the  statistical  properties  (e.g.,  means,  standard  deviations,  minima)  of  the  energy,  material  and
UEVs  of  the  system-sources,  but  the  probability  distribution  functions  were  assumed  to  be  normal,  log-
normal,  or  uniform.  Uncertainty  from  system-sources  was  partitioned  into  energy/material  and  UEV.
The contribution  that  a system-source  made  to  total  emergy  flow  was  strongly  indicative  of  the  amount
of uncertainty  it  contributed.  Out  of  22  parameters  (11  energy/mass  and  their  11  UEVs),  four  of them
contributed  more  than  86%  of  the  uncertainty  to  the  UEV  of  the  crop  yield.  The  UEV  of  nitrogen  fertilizer
contributed  the  most  uncertainty  (19%),  followed  by  the  rate  of  soil  erosion  (11%),  application  rate  of  nitro-
gen  fertilizer  (4%),  and  labor  requirements  (5%).  When  uncertainty  from  all 22  parameters  was  included,
the expected  UEV  of  the  crop  yield  was  118,000  sej/J  with  a total  level  of  uncertainty  (95%  confidence
interval)  of  ±106,000  sej/J  (±90%  of  the  mean),  indicating  that  uncertainty  was  vast.  However,  ±50%  was
due  to energy/mass  uncertainty,  while  ±40% was  due  to  UEV  uncertainty,  of  which  all  but  ±2%  was  due
to  the  UEV  of  nitrogen  fertilizer,  indicating  that  little  uncertainty  (±12,600  sej/J)  was  derived  from  non-
nitrogen  fertilizer  UEVs.  Most  of  the  uncertainty  came  from  the  energy/mass,  rather  than  UEVs,  indicating
that as much  care  should  be  given  to estimating  energy  and material  use  as to  selecting  or  estimating
UEVs.  Our  simulation  ignored  any  multicollinearity  that  may  have  existed  among  the  energy/mass  use  of
the  system-sources,  which  likely  meant  that  we  overestimated  uncertainty.  Future  investigation  should
build  in  the  correlations  that  exist  among  the  system-sources  (e.g.,  nitrogen  fertilizer  is  related  to  water
availability)  to  better  quantify  uncertainty.  The  simulations  suggested  that  uncertainty  from  UEVs  may
be hierarchically  organized  with  a few  system-sources  contributing  a  majority  and  most  contributing
little,  indicating  that  management  of  uncertainty  can  be focused  on  a few  parameters.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Biophysically based environmental accounting methods, such
as life cycle assessment, ecological footprint accounting (Borucke
et al., 2013; Kitzes and Wackernagel, 2009), carbon footprint
accounting, water footprint accounting (Hoekstra et al., 2012;
Jefferies et al., 2012), ecological cumulative exergy account-
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ing (Zhang et al., 2010a, 2010b; Ukidwe and Bakshi, 2007;
Bakshi, 2002), emergy accounting (Campbell and Garmestani,
2012; Srinivasan et al., 2012; Brown and Ulgiati, 2004; Odum,
1996) and others, that strive to estimate the total consump-
tion of natural resources required across a web of processes to
provide an alternative decision-making framework to neoclas-
sical economics, have proliferated over the last few decades.
With each accounting approach there are resource intensity fac-
tors used to estimate the total resource consumption of an
activity, whether it is producing a new product or delivering a
service. Thus, estimates of intensity factors become paramount
to accurately portraying the total resource consumption of an
activity.
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In emergy accounting this intensity factor, known as the solar
transformity when referring to energy, but more generally as a unit
emergy value (UEV), when multiplied by the amount of energy con-
sumed directly from a single source, provides the total indirect and
direct solar emergy embodied in that single source. When an activ-
ity requires the consumption of multiple types of natural resources
across a web of energy transformations, a solar transformity
specific to each type of natural resource is needed for this mul-
tiplication to give the solar emergy contributed by each resource.
Summing the solar emergy contributed from each resource pro-
vides the total indirect and direct solar emergy required to make a
product or deliver a service.

The choice of solar transformity and estimation of direct energy
consumption are key steps toward estimating the total solar
emergy (or natural resource consumption). There are three major
pathways for uncertainty to enter the final estimate of how much
solar emergy something required. First, the list of sources required
could exclude items that were actually required. Or rarely an item
could be erroneously included. Second, the energy consumed dur-
ing use of a source, when estimated using models, could contain
some estimation error. Or, occasionally, when observed data is
available, it will suffer from measurement error. Third, the solar
transformity of the particular source may  not be known for that
specific case so it must be estimated. In emergy accounting, the
approach used most often to estimate a solar transformity is to use
a previously calculated value that is taken directly from the pub-
lished literature or from a database of literature values (Tilley et al.,
2012). For example, rather than estimate a new solar transformity
for freshwater for every new emergy evaluation, a global mean solar
transformity of rainfall is often used.

Often, emergy evaluations follow a tabular procedure where
source flows of energy (joules, J) or mass (grams, g) are transformed
to solar emergy (solar emjoules, sej) and then summed to estimate
the emergy of the yield (Table S1). A point estimate of the energy
or mass for each source is multiplied by a point estimate of its solar
transformity (sej/J) or specific solar emergy (sej/g), respectively, to
estimate the solar emergy it contributes to the total solar emergy
(sej) of the system. The emergy of the sources are summed to esti-
mate how much solar emergy was consumed to produce a yield of
energy. The solar transformity of the yield can then be estimated
by dividing the total solar emergy by the energy of the yield to give
a point estimate.

Uncertainty associated with the parameter estimates has tradi-
tionally not been incorporated into the procedure, but there is the
need to report a standardized, quantitative estimate of the uncer-
tainty (Ingwersen, 2010). The author proposed both an analytical
method and a stochastic method based on Monte Carlo for esti-
mating UEV uncertainty. Recently, Li et al. (2011) provided two
analytical methods (the Variance method and the Taylor method)
to estimate the uncertainty of emergy table-based calculations to
suggest that they may  be better than stochastic methods like Monte
Carlo because they require less information. Brown et al. (2011)
demonstrated the utility of Monte Carlo simulations in estimating
the range of solar transformity of petroleum and natural gas derived
from geological resources.

Comparison of emergy evaluations that have been conducted
for different systems that produce the same product, but in slightly
different ways, clearly show that a range of estimates for the
solar transformity of a single type of product exist (Coppola et al.,
2009; Franzese et al., 2009; Lefroy and Rydberg, 2003; Rodrigues
et al., 2003; Brandt-Williams, 2002). In addition Dynamic Emergy
Accounting (DEA) has shown that the solar transformity of a prod-
uct or storage will vary temporally as the system-sources and
system-yield of the transformation process increase and decrease
(Tilley, 2011). For example, the multiple estimates for the solar
transformity of freshwater discharged from canals in Miami, Florida

fit a lognormal probability distribution function (PDF) when simu-
lated with DEA (Tilley and Brown, 2006). In addition, Cohen (2003)
used DEA to show that the solar transformities of various soil prop-
erties changed during soil genesis. Campbell (2003) was  one of the
first to estimate the variability of a key solar transformity, rain.
Other emergy analysts have also recognized that point estimates
are a limitation (Brown et al., 2011; Amponsah and Le Corre, 2011;
Ingwersen, 2010, 2011; Ulgiati et al., 2011; Hau and Bakshi, 2004;
Campbell, 2003; Cohen, 2003; Odum, 1996), which signals the call
for a practical way  to include uncertainty in emergy analyses and
a better understanding of the level of uncertainty that exists in
emergy evaluations.

With the need to incorporate uncertainty into emergy analyses,
the next question becomes what is an effective and efficient way
to do this? A first step is to elucidate where most of the uncer-
tainty arises in a typical emergy evaluation. If a vast majority of
the uncertainty derives from a few parameters, then they can be
the focus of more precision in future emergy evaluations. Once
the nature of the uncertainty is better understood, future steps
would include adjusting the emergy methodology to reduce over-
all levels of uncertainty and to provide, for example, the capability
to estimate confidence intervals for solar transformities or other
traditional emergy indices, such as the emergy yield ratio or envi-
ronmental sustainability index.

The objective of this study was  to delve deeper into the origins
of uncertainty in emergy evaluations, and determine how much
uncertainty is propagated from the uncertainty associated with the
system-sources of energy or material and their solar transformities
or specific emergy (referred to henceforth as unit emergy values,
UEVs). A second aim was to determine which system-sources added
the most uncertainty to the solar transformity of the yield. Finally, a
third aim was  to determine the impact that the assumed probability
distribution function of the system-sources had on the uncertainty
of the solar transformity of the yield.

1.1. Uncertainty and Monte Carlo simulation

Uncertainty is defined as having limited knowledge about the
value of a parameter, while variability is the variation of the indi-
viduals in a population (Rai and Krewski, 1998). Ingwersen (2010)
suggested that emergy scientists co-opt the US EPA framework
(Lloyd and Ries, 2007) for classifying uncertainty, which identi-
fies the three basic types of uncertainty as scenario, model and
parameter. Scenario uncertainty regards the fit of model param-
eters to geographical, temporal or technological contexts. Model
uncertainty derives from whether the appropriate model (e.g.,
mathematic model) is being used, especially if there is more than
one model for representing the same system. Parameter uncer-
tainty concerns whether appropriate values are being used (e.g.,
in emergy evaluation this includes the solar transformity and the
energy used). Ingwersen (2010) adds that emergy evaluations can
be prone to other types of error such as, errors in use of significant
figures, use of UEVs that include inventory items from a large-scale
source, arithmetic errors, different global baselines, and use of an
inappropriate UEV.

Monte Carlo simulation is a stochastic model that uses random
number generation to select values for parameters from assumed
PDFs that then interact in some way  to produce an output that
has its own PDF. Thus, it is a technique that is well-suited to elu-
cidate the effects of parameter uncertainty. It could also be used
to explore the effects of model and scenario uncertainty, but we
focused on using it for investigating parameter uncertainty. Thus,
model uncertainty was not evaluated here. Rather, we focused on
assessing the contribution of parameter and scenario uncertainty
in the agricultural crop systems selected for this study. Certainly,
model uncertainty exists since there are many ways to produce
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