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a  b  s  t  r  a  c  t

The  present  study  describes  a state-of-the-art  methodology  based  on  an adaptive  Metropolis–Hastings
algorithm  to facilitate  efficient  Bayesian  sampling  for  realistic  lower  trophic  level  (LTL)  marine  ecosystem
models.  The  main  objective  is  to explore  the ability  to differentiate  between  biological  parameters  that
can  learn  from  observations  and those  that cannot.  The  Bayesian  approach  is  applied  to  the northwestern
coastal  Gulf  of  Alaska  region  and  uses  both  synthetic  and  actual  (in situ  and  remotely  sensed)  observations.
LTL  ecosystem  dynamics  in  the  Bayesian  framework  are  described  by  a process  model  consisting  of  a  1-
dimensional  Nutrient–Phytoplankton–Zooplankton–Detritus  formulation  with  iron  limitation  (NPZDFe)
and  vertical  mixing.  The  results  illustrate  the  ability  to determine  parameter  posterior  distributions  for
fundamental  biological  rates,  such  as  maximum  phytoplankton  growth  or  zooplankton  grazing.  By  using
various  observational  platforms  as  data  stage  inputs,  the results  also  demonstrate  the  impact  of  spatial
and  temporal  sampling  on  parameter  posterior  distributions,  as well  as the  benefits  of  having  concurrent
measurements  for two  or more  state  variables  of  the  process  model  (e.g.,  chlorophyll  and  nitrate  concen-
trations).  Extending  the  method  to multiple  parameters  is  non-trivial,  as  posterior  distributions  become
impacted  by correlated  and/or  disproportionate  contributions  for certain  model  parameters.  Controlled
experiments  with  “near  perfect  data”  were  useful  to  characterize  parameter  identifiability  based  on  infor-
mation content  in  the  BHM  data  stage  inputs,  as  well as  to separate  uncertainties  due  to sampling  issues
vs.  uncertain  ecosystem  process  interpretation.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Lower trophic level (LTL) marine ecosystem models have
become increasingly important for understanding how marine eco-
logical systems respond to and affect climate forcing. In particular,
when coupled to physical models, LTL marine ecosystem mod-
els are one of the main tools for evaluating primary productivity
and its impact on the global carbon cycle (e.g., Friedrichs et al.,
2009). Since available in situ observations are often sparse and
remotely sensed observations are generally limited to surface or
upper-ocean vertically averaged values for a single variable (i.e.,
chlorophyll), models are also important for exploring the dynam-
ical linkages between multiple components of the marine food
web. LTL marine ecosystem models are most often represented
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as a system of multi-component nonlinear differential equations
with various physical and biological parameterizations (e.g., Miller,
2004). It is well-known that there is dependence among model
parameters and that there is typically not enough data to ade-
quately calibrate these parameters (i.e., the “under-determination
problem” in marine ecosystem modeling; e.g., Ward et al., 2010,
and references therein). In addition, previous studies have deter-
mined that a particular parameter set that optimizes a model in one
location may  not be the same for another location (e.g., Friedrichs
et al., 2007, and references therein).

LTL marine ecosystem models have traditionally been consid-
ered from a deterministic perspective and parameter estimation
(or calibration) has been conducted with standard optimization
algorithms (e.g., Ward et al., 2010). However, in the case of an
underdetermined system, such methods require that poorly con-
strained parameters be fixed and/or limited to realistic ranges to
give realistic results relative to observations. As described by Ward
et al. (2010), arbitrarily fixing parameters may lead to too little
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model variability, while prescribing parameter ranges may  yield
too much model variability. Ward et al. (2010) recommend the
adoption of a more sophisticated use of prior information and sug-
gest that a Bayesian approach which assimilates data in the context
of informative prior knowledge might be favored. Recent work by
Weir et al. (2012) also provides useful insight on ocean ecosys-
tem models and parameter estimation in the contexts of Maximum
Likelihoods and Bayes Theorem. More specifically, they investi-
gate state and parameter estimation for a predator–prey system
(i.e. the Lotka–Volterra equations) employing solution procedures
adapted from deterministic data assimilation methodologies (e.g.,
cost function minimization, particle filters) and analyses based in
non-linear systems theory (e.g., bifurcations, limit cycles, and fixed
points). Their approach offers interesting connections and potential
synergies with the Markov Chain Monte Carlo (MCMC) parameter
estimation methods implemented in the present study.

1.1. Benefits of Bayesian approach

In the context of LTL marine ecosystem models, the Bayesian
framework has been considered for both state estimation (e.g.,
Harmon and Challenor, 1997; Evensen, 2003; Dowd, 2006, 2007;
Jones et al., 2010) and parameter estimation (Harmon and
Challenor, 1997; Malve et al., 2007; Jones et al., 2010; Dowd,
2011) for marine biogeochemical models. For the state esti-
mation problem, the preferred approach has been based on
derivative of sequential importance sampling (e.g., Doucet et al.,
2001), primarily ensemble Kalman filtering (e.g., Evensen, 2003)
and particle filtering (Dowd, 2006), although MCMC  methods
(e.g., Robert and Casella, 2004) have been considered as well
(Dowd, 2007). For parameter estimation, Malve et al. (2007) have
implemented a modern MCMC  algorithm that relies on an adap-
tive Metropolis–Hastings (M–H) algorithm. The strength of this
methodology is that it accounts for dependence in the parame-
ters and adapts the associated proposal distribution to increase
sampling efficiency. The simultaneous inference on both param-
eters and states has been approached from both the hybrid particle
filtering/M–H perspective (Jones et al., 2010; Dowd, 2011) and the
MCMC  sampling perspective (e.g., Harmon and Challenor, 1997;
Jones et al., 2010). However, these particular implementations con-
sidered quite low-dimensional parameter and state-spaces.

Jones et al. (2010) suggest that the MCMC–Gibbs approach is
more efficient than the particle filter/M–H approach, but it may  be
more limited in practical problems due to the difficulty of obtaining
efficient proposals for high-dimensional state processes. In addi-
tion, the MCMC  approach of Jones et al. (2010) used a quasi-linear
approximation of biogeochemical model dynamics to facilitate
Gibbs updates. Such an approximation may  not be reasonable
in models formulations more complex than the two-component
Lotka–Volterra predator–prey model that motivated their exam-
ple. Given the importance of LTL marine ecosystem models, there
is a need for a Bayesian inference methodology that can accom-
modate high dimensional, underdetermined parameter spaces, as
well as high-dimensional state-spaces and non-Gaussian data and
process models.

The present study describes a state-of-the-art methodology
based on adaptive M–H  methodology to facilitate efficient Bayesian
sampling for realistic LTL marine ecosystem models, with one
of the main objectives being to explore the ability to differenti-
ate between parameters that can learn from the data and those
that cannot. More specifically, the Bayesian hierarchical model
(BHM) is applied to the northwestern coastal Gulf of Alaska (CGOA)
region (Supplementary Fig. S1) and uses both actual observa-
tions (in situ and remotely sensed) and “pseudo-observations”
generated from a 3-dimensional (3-D) coupled physical–biological
model. LTL ecosystem dynamics in the Bayesian framework are

described by a process model consisting of a 1-dimensional (1-D)
NPZD (Nutrient–Phytoplankton–Zooplankton–Detritus) formula-
tion with iron limitation (NPZDFe; Fiechter et al., 2009) and vertical
mixing.

See Supplementary Fig. S1 as supplementary file. Supplemen-
tary material related to this article found, in the online version, at
http://dx.doi.org/10.1016/j.ecolmodel.2013.03.003.

By using NPZDFe explicitly as the process model in the Bayesian
framework, the results presented here complement those from
previous studies which have attempted to characterizing param-
eter influence and posterior distribution based on: (1) ensemble
calculations with the 3-D deterministic physical–biological model
(Fiechter, 2012), and (2) first-order emulator models constructed
on the basis of the deterministic ensemble simulations (Hooten
et al., 2011; Leeds et al., 2012b). Since the NPZDFe formulation
is directly embedded in the Bayesian hierarchy, the associated
computational requirements are reduced as the solution pro-
cedure no longer requires multiple runs of the 3-D coupled
physical–biological model to produce meaningful ensemble
statistics.

Straight-forward implementation of the parameter estimation
BHM for multiple parameters of the NPZDFe model was  not
readily tractable, as Bayesian estimation was not converging after
lengthy and expensive iterative solution procedures. The use
of deterministic ensemble calculations with the NPZDFe model
coupled to a regional ocean circulation model (Fiechter, 2012)
helped re-scope parameter estimation experiments to focus on
identifying two  key biological parameters (i.e.,  phytoplankton
growth rate and zooplankton grazing rate). Furthermore, “near
perfect data” experiments with subsets of the deterministic model
output were useful to characterize parameter identifiability based
on information content in the datasets used as BHM data stage
inputs. These controlled experiments also helped separate uncer-
tainties due to sampling issues vs. uncertainties associated with
ecosystem process interpretation.

1.2. CGOA physical–biological environment

The CGOA exhibits a highly productive shelf supported by
spring bloom dynamics and a high nutrient-low chlorophyll
(HNLC) region offshore where, despite elevated nitrate and silicate
concentrations, primary production remains low because of severe
iron limitation on phytoplankton growth (Martin and Fitzwater,
1988). Physical mechanisms contributing to cross-shelf exchange,
such as seasonal anticyclonic eddies, are critically important for
alleviating phytoplankton growth limitation in the HNLC region via
offshore transport of iron-rich shelf waters (Brown and Fiechter,
2012; Crawford et al., 2007; Fiechter and Moore, 2012; Ladd
et al., 2005). Consequently, primary and secondary productivity
in the CGOA exhibit significant spatial and temporal variabil-
ity in response to physical and biological cross-shelf gradients
(Strom et al., 2006, 2007). For example, intrinsic phytoplankton
growth rates along the Seward Line (a cross-shelf transect off
Seward, Alaska, routinely sampled during the GLOBEC program)
were observed to vary by an order of magnitude (from ca. 0.1
to 1.0 day−1) within a given month and across different shelf
regions (Strom et al., 2006). Because of its intrinsic physical and
biological variability, the CGOA is a well-suited test bed to estimate
parameter distribution and uncertainty with respect to existing
and future LTL ecosystem models for that region.

2. BHM methodology and implementation

Let X be the random variable denoting the process of interest,
let Y be observations and let �p and �d be parameters associated
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