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a  b  s  t  r  a  c  t

We  describe  a flexible  class  of  continuous-time  models  for  animal  movement,  allowing  movement
behaviour  to depend  on  location  in terms  of a discrete  set  of regions  and  also  on  an  underlying  behavioural
state.  We  demonstrate  the  ability  of  these  models  to  represent  complex  behaviour  and  spatial  hetero-
geneity,  as  found  in  real  movement  studies,  while  retaining  tractability  and  the conceptual  advantages  of
a  continuous-time  formulation.  We discuss  the  relationship  between  the  models  defined  here  and  a  range
of important  applications,  both  when  movement  behaviour  is  the  main  focus  and  when  it is  essentially
a  nuisance  process,  for example  in  spatially  explicit  capture–recapture.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

This paper introduces a new continuous-time modelling frame-
work for animal movement, which extends the models introduced
by Dunn and Gipson (1977) and Blackwell (1997, 2003) by allow-
ing for spatial heterogeneity. Movement models are important in
understanding and analysing movement data from radio-tracking,
GPS tags, etc. (e.g. Morales et al., 2004; McClintock et al., 2012),
in the analysis of other data that need to take movement into
account such as spatially explicit capture–recapture (e.g. Royle and
Young, 2008; Tufto et al., 2012), and in formalising conceptual mod-
els involving movement, for example in understanding individual
habitat use (e.g. Matthiopoulos, 2003).

Modelling movement is challenging because of the need to
represent the strong autocorrelation between locations. One gen-
eral approach that deals with this problem of dependency is to
model animal movement in continuous time using a diffusion pro-
cess like the bivariate Ornstein-Uhlenbeck (OU) process (Dunn and
Gipson, 1977), perhaps with some additional underlying discrete
behavioural state (Blackwell, 1997, 2003). This approach is lim-
ited, however, because it does not allow for the realistic possibility
that animals move differently in the different habitats they utilise.
Current approaches to including spatial heterogeneity in diffu-
sion models by Ovaskainen (2004) and Ovaskainen et al. (2008)
have some attractive features but also some limitations compared
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with models described here; see Section 7 for a more detailed
comparison. The novel modelling framework for animal movement
presented here allows spatial heterogeneity to be incorporated into
continuous-time models in a flexible and parsimonious way. These
properties also simplify statistical inference, which is not the focus
of this paper but is discussed briefly in Section 5.

Part of the motivation for this work is to facilitate thinking
about movement in continuous rather than discrete time. In most
of the recent literature, animal movement modelling is carried out
in discrete time, especially in the context of statistical analysis.
Discrete-time models represent the modelled individual’s locations
only at particular time instants, which are usually regularly spaced
in time, and often correspond to the times at which observations
have been made (or were intended to be made). Such models may
be entirely appropriate if the discrete timescale is behaviourally
meaningful, such as modelling daily locations to avoid complex
intra-day effects when they are unimportant to the application. Ide-
ally this would involve observations at a fixed time of day; Morales
et al. (2004) do essentially this, but the times of their observations
may  vary by two  hours in either direction, “depending on fix avail-
ability”, and they then make a linear correction to distance moved.
Some studies use less frequent observations instead, for example
by taking the ‘best’ of a burst of observations made every few days
(Fuller et al., 1998; Martell et al., 2001), in which case a discrete-
time model with 1-day time-steps may be appropriate, depending
on the length of the observation cycle.

Meaningful models that are in a sense discrete-time models can
also be obtained as approximations to continuous-time ones. That
is, the model can be formulated in continuous time, and then the
implied movement properties over particular intervals calculated.
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Our emphasis here is not necessarily on the exactness of calcula-
tions with continuous-time models, but on the coherence of the
underlying description of movement, even if implemented only
approximately.

In many cases, however, discrete-time models are formulated
on a regular timescale dictated by the observation process, and
therefore having no specific behavioural interpretation, though the
approximate magnitude of the time interval will typically be chosen
to be relevant to the behaviour of interest. There is then no guar-
antee that they correspond to a meaningful model on any other
timescale, often making it impossible to combine data or compare
results from different experiments or analyses, even on the same
species. The diffusion models cited and developed here should help
increase the prospects for coherent movement modelling.

In addition, there are situations where thinking about continu-
ous time is essential. In ‘common sense’ terms, animal movement
clearly takes place in continuous time, in that at any given instant,
“everybody’s got to be somewhere” (Milligan, 1972); whatever the
underlying ‘truth’, it seems natural and meaningful to think about
animal locations at any time between observations, in the same way
that continuous-time modelling (e.g. using differential equations)
is natural in many areas of macroscopic physics. These intermedi-
ate locations can be crucial to the scientific questions of interest in
a movement study; this is illustrated by recent work using Brown-
ian bridge models to investigate utilisation distributions (Bullard,
1999; Horne et al., 2007), though the models there are much sim-
pler than most of those discussed in the present paper. Of course, it
is possible to have some representation of locations at intermedi-
ate times within models that are essentially ‘discrete time’, but by
definition such representations treat intermediate times differently
from those forming the main model, and they are often extremely
simplified e.g. linear interpolation (Jonsen et al., 2005).

Throughout this paper, we concentrate on the most common
case of two-dimensional movement for our terminology and exam-
ples. However, all of the models apply readily to movement in three
dimensions, as arises naturally with aquatic or avian tracking, or in
one dimension, of increasing importance in analysing depth-only
data from diving marine mammals for instance. In fact, the nature
of the vertical dimension of movement makes spatial heterogeneity
all the more important in such cases.

In Section 2, we introduce our modelling framework, concen-
trating on spatial heterogeneity in movement; in Section 3 we
extend it to allow more general behavioural states. In each case, we
illustrate the range of possible movement behaviours that can be
represented by showing some realisations of our models relevant to
particular kinds of applications. Sections 4–6 address some techni-
calities relating to simulation, inference and higher-order models,
and we then go on to discuss in Section 7 how our models relate
to some of the existing models used in the applied literature and
show how some of the latter can be represented or approximated
by particular cases of our models.

2. Incorporating spatial heterogeneity into models for
animal movement

2.1. Behaviour determined by region

We  incorporate spatial heterogeneity into models for animal
movement by partitioning the environment into a finite set of
regions, and allowing the properties of the animal’s movement pro-
cess to vary with the region it is in at any given instant. We  limit
ourselves to specific, tractable parametric forms for the process in
each region. We  do this by extending the continuous time thresh-
old autoregressive models of Brockwell et al. (1991),  Brockwell and
Hyndman (1992),  and Hyndman (1994) into two dimensions. The
general pth-order autoregression is discussed in Section 6, but for

the moment we  concentrate on the first order (p = 1) case, which is
sufficient for a wide range of applications.

A discrete-time threshold autoregressive model partitions the
real line into l intervals, and the process at time t, Xt, then satis-
fies one of l autoregressive equations depending on the interval
in which Xt−d falls, with d a positive integer. The continuous time
analogue of this model also partitions the real line into l intervals.
However, in this case, the model is a diffusion process X(t) that
satisfies one of l stochastic differential equations, the equation sat-
isfied at time t depending on the interval in which X(t) falls. The
form of these l SDEs is given by the following equation:

dX(t) = (b(i)X(t) + c(i))dt + �(i)dW(t), ri−1 < X(t) < ri,

where −∞ = r0 < r1 < · · · < rl = ∞,  each �(i) > 0 and W(t) is standard
Brownian motion. Here, if X(t) is in the ith interval, say, then b(i) and
c(i) determine the expected change in X(t) over a short time incre-
ment, as a linear function of the current value, while �(i) controls
the variance about that expected value. Thus each of these l SDEs
individually defines a continuous-time autoregressive process of
order 1. A precise mathematical definition of the overall process
X(t) requires consideration of the behaviour at the boundaries; see
Brockwell et al. (1991) for details.

Note that over a period of time spent in the ith interval, the pro-
cess defined by an equation of the above form is simply a univariate
Ornstein-Uhlenbeck process, with

X(t + s)|X(s) = x(s) ∼ N(� + ebt(x(s) − �), �(1 − e2bt))

writing b = b(i) and defining � = − c(i)/b(i), � = − �(i)2/2b(i).
These continuous-time threshold models naturally extend into

two dimensions by partitioning the real plane into l regions R1,
. . .,  Rl and modelling the movement in each region by a different
bivariate diffusion process; the same applies in higher dimensions.
We can think of this as representing an animal ‘behaving differ-
ently’ in different regions cf. the random behavioural switching of
Blackwell (1997, 2003).  This modelling approach is also an exten-
sion of the Dunn and Gipson (1977) model for animal movement,
because their model corresponds to the case when the number of
regions, l, is one.

In the two-dimensional case, over a time interval spent in the
ith region, the process followed is a bivariate OU process, with

X(t + s)|X(s) = x(s) ∼ N(� + eBt(x(s) − �), � − eBt�eB′t)

where � is a 2 × 1 vector, B, � are now 2 × 2 matrices and B′ is the
transpose of B; see Blackwell (1997) for discussion of the interpre-
tation of, and constraints on, these parameters.

In some cases it is useful to also allow simpler diffusion models
of movement in a particular state; Brownian motion, with or with-
out drift, can be regarded as a limiting case of the above OU process
and can be included in these models where appropriate.

2.2. Example: foraging in two neighbouring patches

A simple example of this kind of model can represent the
behaviour of an animal that spends its time foraging in two
neighbouring habitat patches. (A more realistic representation is
given in Section 3.2; the present version is purely illustrative.) A
random diffusion that exhibits this behaviour is shown in Fig. 1.
We see that in this case the real plane was  partitioned into two
regions by the vertical line x = 0 and that this boundary was crossed
three times by the simulated movement pattern. In each region
movement was  modelled by a single bivariate OU process. The OU
process associated with the left hand region had a centre of attrac-
tion at (− 2, 0), whereas the process associated with the right hand
region had one at (2, 0). These centres of attraction can be thought
of as representing something that exerts an attracting influence on
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