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a  b  s  t  r  a  c  t

Growth  models  such  as  the  logistic  equation  are  widely  studied  and  applied  in  population  and  ecological
modelling.  The  carrying  capacity  in  the  logistic  equation  is  usually  regarded  as  a  constant  which  is not
often  realistic.  Functional  forms  of the  carrying  capacities  are  used  to  describe  changes  in the  environ-
ment.  The  purpose  of  this  study  is  to  derive  an  exact  solution  of the  non-autonomous  logistic  equation
with  a  saturating  carrying  capacity.  The  solution  is  found  via  a power  series  resulting  from  a  straightfor-
ward  algebraic  method.  For  practical  applications  the  power  series  may  be truncated,  a  simple  criterion
is established  that  leads  to a good  approximate  solution.  The  approximate  solution  is  in  good  agreement
with  the numerical  simulations,  even  though  only  a small  number  of  terms  are  used.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The logistic equation was introduced to describe population
growth with a self-limitation term which serves as a correction
to the unlimited growth of the Malthusian model. It is commonly
applied in the studies of human, plants, animal and bacterial popu-
lations, and is also used to forecast technological and economic
growth. The classical logistic (or Verhulst’s) equation is a nonlinear
first order differential equation

dN(t)
dt

= aN(t)
(

1 − N(t)
K

)
, N(0) = N0, (1)

where N(t) denotes the population density, a is the intrinsic growth
rate, K is the environmental carrying capacity and N0 is the popu-
lation density at time t = 0. Since a and K are constants the logistic
equation (1) is said to be autonomous. The solution is

N(t) = KN0

Ke−at + N0(1 − e−at)
.  (2)

The carrying capacity K in (1) is a constant which is not often real-
istic. A changing environment may  result in a significant change
in the carrying capacity. For example, food production or new
resources which can be regarded as positive changes in the environ-
ment will elevate the carrying capacity. Negative changes, however,
such as food depletion or a toxic effect worsen the environment
thus will degrade the carrying capacity.
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As an alternative to the constant carrying capacity a number
of studies have used a time-dependent carrying capacity, K(t), for
various applications. By using a time varying carrying capacity, the
explicit time-dependence of K(t) renders the logistic equation as
non-autonomous.

The general mathematical properties of the non-autonomous
logistic equation were deduced by Coleman (1979a) and later mod-
ified by Hallam and Clark (1981).  Table 1 shows several functional
forms for carrying capacities that have been used in the literature.

An oscillating carrying capacity was used to describe seasonal
environments (Coleman et al., 1979b; Leach and Andriopoulos,
2004; Rogovchenko and Rogovchenko, 2009), a carrying capacity
with saturation was  used to model enrichment in an inland sea by
a nutrient (Ikeda and Yokoi, 1980) and to describe the changing
micro-environment beneath an occlusion on healthy human skin
(Safuan et al., 2011). A carrying capacity which itself varies logis-
tically was introduced by Meyer (1994) and Meyer and Ausubel
(1999) to model the technological development of a population.
A similar form of the carrying capacity was  used in modelling the
body size of a host infected by parasites (Ebert and Weisser, 1997).
For these applications it is vital that the carrying capacity is not
treated as a constant.

2. Non-autonomous logistic equation

The purpose of this paper is to derive an exact solution of the
non-autonomous logistic equation used in Safuan et al. (2011).  Con-
sider the non-autonomous logistic equation

dN(t)
dt

= aN(t)
(

1 − N(t)
K(t)

)
, (3)
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Table 1
Time-dependent carrying capacities K(t).

K(t) References

K(t) = a + b sin(ct + �) Coleman et al. (1979b), Leach and
Andriopoulos (2004), and Rogovchenko and
Rogovchenko (2009)

K(t) = a + b(1 − e−ct) Ikeda and Yokoi (1980) and Safuan et al. (2011)

K(t)  = K1 + K2/(1 + ae−bt) Meyer (1994) and Meyer and Ausubel (1999)

K(t) = K1K2/[(K2 − K1)e−bt + K1] Ebert and Weisser (1997)

where the carrying capacity, K(t), takes the form

K(t) = Ks (1 − be−ct). (4)

Here Ks is the bacterial saturation level, c is the saturation constant,
b = 1 − K0/Ks, with K(0) = K0. Observe here 0 < b < 1.

The model in Safuan et al. (2011) assumed that on the unoc-
cluded skin, the environment is relatively constant and the density
of the microbes is in equilibrium with its environment such that
K0 ≈ N0. As a result, b is always a positive number since N0 < Ks.
After an occlusion is applied to the skin the environment beneath it
begins to change to one that is generally more favourable for micro-
bial growth. Thus, a monotonically increasing function (4) was  used
to describe the changing environment beneath an occluded skin. Eq.
(3) has the solution

N(t) = N0eat

1 + (aN0/Ks)
∫ t

0
(eax/(1 − be−cx)) dx

. (5)

The exact solution of the non-autonomous equation can be derived
by noting∫ t

0

eax

1 − be−cx dx = F(t) − F(0), (6)

where

F(t) = eat

a 2F1

(
1, −a

c
; 1 − a

c
; be−ct

)
. (7)

The function 2F1 is a hypergeometric function which converges for
c > 0 and 0 < b < 1. It can also be expressed as the series

2F1

(
1, −a

c
; 1 − a

c
; be−ct

)
=

∞∑
n=0

(1)n(−a/c)n

(1 − a/c)n

(be−ct)n

n!
, (8)

where (a)n is a Pochhammer symbol: (a)n = a(a + 1) · · · (a + n − 1)
(Abramowitz and Stegun, 1972).

3. An alternative approach

Suppose a > 0 and c > 0. Since 0 < b < 1, we may  formally write

1

1 − be−cx =
∞∑

n=0

bne−ncx, x ≥ 0. (9)

The integral in the denominator of (5) then becomes∫ t

0

eax

1 − be−cx dx =
∫ t

0

∞∑
n=0

bne(a−nc)x dx, =
∞∑

n=0

bn

a − nc
(e(a−nc)t − 1).

(10)

Accordingly, the exact solution is

N(t) = KsN0

Kse−at + aN0
∑∞

n=0(bn/(a − nc))(e−nct − e−at)
. (11)

Although this solution is exact for t ≥ 0, for practical applications
the series solution needs to be truncated. Note that for some n ∈ N,

a − nc < 0, the index of the exponential in (10) is negative and so
this term’s contribution to the series solution falls off rapidly for
increasing t. Consequently, truncating the series at the (n − 1)th
term incurs a maximal error of O(bn).

Using (11), we  can derive a number of approximate solutions of
the non-autonomous logistic equation simply by terminating the
series at different values of n.

4. Special cases

For c = 0, K(t) = K0 for all t. The solution for this case is given by
(2) with K replaced by K0,

N(t) = K0N0

K0e−at + N0(1 − e−at)
. (12)

As c→ ∞,  the carrying capacity is a step function (K0 < Ks),

K(t) =
{

K0, t ≤ 0,

Ks, t > 0.
(13)

Suppose N(t1) = N1 < K0 for some t1 < 0. The solution is

N(t) =

⎧⎪⎨
⎪⎩

N1K0

K0e−a(t−t1) + N1(1 − e−a(t−t1))
, t ≤ 0,

KsN0

Kse−at + N0(1 − e−at)
, t > 0,

(14)

where

N0 = N1K0

K0eat1 + N1(1 − eat1 )
. (15)

Further, if for t < 0 the population is in equilibrium with its envi-
ronment, then K0 ≈ N(t1) = N1 implies K0 ≈ N0. The solution for N(t)
can then be written in terms of the carrying capacities K0 and Ks,

N(t) ≈ KsK0

Kse−at + K0(1 − e−at)
. (16)

5. Application: growth under an occlusion of the skin

Provided the initial population, N0, and the saturation level, Ks,
can be obtained from experimental data, we can then estimate
parameter b. The parameters a and c are estimated to fit the data.
The parameters used in the model in Safuan et al. (2011) were
a = 6.6/day, b = 0.99996, c = 1.9/day, N0 ≈ K0 = 920 counts/cm2 and
Ks = 2.3 × 107 counts/cm2.

As mentioned previously, using the exact solution (11) is a little
cumbersome, instead the numerical solution of (3),  Nnum, is used
to compare with the various approximations generated by (11) for
the same parameters used in Safuan et al. (2011).  Napp1, Napp2,
Napp3, Napp4 and Napp5 represent one (open circle), two (cross),
three (closed circle), four (left arrow) and five (right arrow) terms
retained in the approximation, respectively. Fig. 1 shows that with
one term, the approximation is in good agreement with the numer-
ical result. With more terms in the approximation, even better
agreement is achieved. However, due to the large scale of N, dif-
ferences in the curves are not clearly visible.

To determine the accuracy of the various approximate solutions,
relative errors were calculated (see Fig. 2). The maximum relative
error at t = 2 for the five term approximation (retaining terms up
and including n = 4) is only 0.06%, four terms (0.06%), three terms
(0.07%), two terms (0.18%) and with only one term (3.2%). These
values indicate that our approximations are reasonably good. Max-
imum relative error is clearly reduced by using more terms in the
solution (11). According to our simple criterion, the series may  be
terminated at the n − 1 term when a − nc < 0. Here, the series may
be terminated at n = 3 (Napp4).
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