ELSEVIER

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Note

A deterministic sublinear-time nonadaptive algorithm for metric 1-median selection

Ching-Lueh Chang a,b,*

ARTICLE INFO

Article history:
Received 24 February 2015
Received in revised form 30 July 2015
Accepted 31 July 2015
Available online 5 August 2015
Communicated by S. Sen

Keywords: 1-Median selection Sublinear-time algorithm Metric space k-Median selection Closeness centrality

ABSTRACT

We give a deterministic $O(hn^{1+1/h})$ -time (2h)-approximation nonadaptive algorithm for 1-median selection in n-point metric spaces, where $h \in \mathbb{Z}^+ \setminus \{1\}$ is arbitrary. Our proof generalizes that of Chang [2].

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A metric space (M,d) is a nonempty set M endowed with a function $d: M \times M \to [0,\infty)$ such that for all x, y, $z \in M$,

- d(x, y) = 0 if and only if x = y,
- d(x, y) = d(y, x), and
- $d(x, y) + d(y, z) \ge d(x, z)$ (triangle inequality).

The METRIC 1-MEDIAN problem asks for a point in an n-point metric space (M,d) with the minimum average distance to other points. For $c \ge 1$, a point $\hat{p} \in M$ is said to be c-approximate for METRIC 1-MEDIAN if

$$\sum_{x \in M} d\left(\hat{p}, x\right) \le c \cdot \min_{p \in M} \sum_{x \in M} d\left(p, x\right).$$

An algorithm for METRIC 1-MEDIAN is nonadaptive if the sequence of distances that it inspects depends only on M but not on d. Because there are n(n-1)/2 nonzero distances, "sublinear-time" will mean " $o(n^2)$ -time."

Indyk [5,6] shows that METRIC 1-MEDIAN has a Monte-Carlo $O(n/\epsilon^2)$ -time $(1+\epsilon)$ -approximation algorithm for each $\epsilon > 0$. In \mathbb{R}^D , where $D \ge 1$, METRIC 1-MEDIAN has a Monte-Carlo $O(2^{\text{poly}(1/\epsilon)}D)$ -time $(1+\epsilon)$ -approximation algorithm for all $\epsilon > 0$ [7]. Many other algorithms are known for k-median selection [1,4,7]. For example, Guha et al. [4] give a deterministic,

^a Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, Taiwan

^b Innovation Center for Big Data and Digital Convergence, Yuan Ze University, Taoyuan, Taiwan

^{*} Correspondence to: Department of Computer Science and Engineering, Yuan Ze University, Taoyuan, Taiwan. E-mail address: clchang@saturn.yzu.edu.tw.

 $O(n^{1+\epsilon})$ -time, $O(n^{\epsilon})$ -space, $2^{O(1/\epsilon)}$ -approximation and one-pass algorithm as well as a Monte-Carlo algorithm for k-median selection in metric spaces, where $\epsilon > 0$.

We show that METRIC 1-MEDIAN has a deterministic $O(hn^{1+1/h})$ -time (2h)-approximation nonadaptive algorithm for all $h \in \mathbb{Z}^+ \setminus \{1\}$, generalizing the following theorems:

Theorem 1. ([2]) METRIC 1-MEDIAN has a deterministic $O(n^{1.5})$ -time 4-approximation nonadaptive algorithm.

Theorem 2. ([8]) For each $h \in \mathbb{Z}^+ \setminus \{1\}$, METRIC 1-MEDIAN has a deterministic $O(hn^{1+1/h})$ -time (2h)-approximation (adaptive) algorithm.¹

When n is a perfect square and h=2, our proof is equivalent to that of Theorem 1 [2]. Chang [3] shows that METRIC 1-MEDIAN has no deterministic $o(n^2)$ -query $(4-\Omega(1))$ -approximation algorithms (where an algorithm's query complexity is the number of distances that it inspects). So the approximation ratio of 4 in Theorem 1 cannot be improved to a smaller constant.

2. Main result

Let $(\{0,1,\ldots,n-1\},d)$ be a metric space and $h\in\mathbb{Z}^+\setminus\{1\}$. Our goal is to give a deterministic $O(hn^{1+1/h})$ -time (2h)-approximation nonadaptive algorithm for METRIC 1-MEDIAN. To this end, we will design a function $\tilde{d}:\{0,1,\ldots,n-1\}^2\to [0,\infty)$ with the following properties:

- (1) A 1-median with respect to \tilde{d} is a (2h)-approximate 1-median with respect to d.
- (2) There exists a computable set $S(n,h) \subseteq \{0,1,\ldots,n-1\}^2$ (depending only on n and h) of size $O(hn^{1+1/h})$ such that $\tilde{d}(\cdot,\cdot)$ can be computed deterministically given d(i,j) for $(i,j) \in S(n,h)$.

Items (1)–(2) imply that simply outputting a 1-median with respect to \tilde{d} yields a deterministic $O(hn^{1+1/h})$ -query (2h)-approximation nonadaptive algorithm.

A rough and informal intuition for constructing \tilde{d} is in order. For independent and uniformly random points \boldsymbol{u} and \boldsymbol{v} , we will let

$$\tilde{d}(\boldsymbol{u},\boldsymbol{v}) = \sum_{k=0}^{h-1} d(c_k, c_{k+1})$$

for a suitable sequence of uniformly random (but not independent) points, $c_0 = \mathbf{u}, c_1, c_2, \dots, c_{h-1}, c_h = \mathbf{v}$. This and the triangle inequality for d imply that for any 1-median OPT,

$$\tilde{d}(\boldsymbol{u}, \boldsymbol{v}) \leq \sum_{k=0}^{h-1} \left(d(OPT, c_k) + d(OPT, c_{k+1}) \right),$$

whose right-hand side is a sum of 2h distances from OPT to uniformly random points. This makes item (1) plausible. To make item (2) plausible as well, we will require (c_k, c_{k+1}) , where $k \in \{0, 1, ..., h-1\}$, to take a certain form that is taken by only $O(hn^{1+1/h})$ pairs of points.

We now proceed with formal constructions. Let $t \stackrel{\text{def.}}{=} \lceil n^{1/h} \rceil$. For all $j \in \{0, 1, ..., n-1\}$, denote the (unique) t-ary representation of j by

$$(s_{h-1}(j), s_{h-2}(j), \dots, s_0(j)) \in \{0, 1, \dots, t-1\}^h,$$

i.e.,

$$\sum_{\ell=0}^{h-1} s_{\ell}(j) \cdot t^{\ell} = j. \tag{1}$$

For all $i, j \in \{0, 1, ..., n-1\}$,

$$\tilde{d}(i, i + j \mod n) \stackrel{\text{def.}}{=} \sum_{k=0}^{h-1} d\left(i + \sum_{\ell=h-k}^{h-1} s_{\ell}(j) \cdot t^{\ell} \mod n, i + \sum_{\ell=h-1-k}^{h-1} s_{\ell}(j) \cdot t^{\ell} \mod n\right). \tag{2}$$

By convention, empty sums vanish, e.g., $\sum_{\ell=h}^{h-1} s_{\ell}(j) \cdot t^{\ell} = 0$.

¹ The time complexity of $O(hn^{1+1/h})$ is originally presented as $O(n^{1+1/h})$ because h is independent of n. We include the O(h) factor, which is implicit in the original proof, for ease of comparison.

Download English Version:

https://daneshyari.com/en/article/437617

Download Persian Version:

https://daneshyari.com/article/437617

Daneshyari.com