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a  b  s  t  r  a  c  t

A  matrix  model  for age-stage-structured  population  dynamics  of Calamagrostis  canescens,  a  perennial
grass  species  colonizing  forest  clear-cut  areas,  was  calibrated  before  from  a type  of  data  called  ‘identified
individuals  with  unknown  parents’  (Logofet,  2008)  in order  to  estimate  �1,  the dominant  eigenvalue
of  the  projection  matrix.  A number  of  methods  were  applied  to tackle  the  ‘reproductive  uncertainty’
in  data,  and  the  output  variety  contained  �1 both  greater  and  less  than  1 (Logofet,  2008),  leaving  the
estimation  uncertain.  An  ‘adaptation  conjecture’  was  then  proposed  that  reduced  the  calibration  to a
nonlinear  constraint  maximization  problem  and  provided  for  a satisfactory  outcome.

Two  reasons  have  now  caused  revisiting.  First,  the maximization  technique  has  been  theoretically
comprehended.  In  particular,  an  existence-uniqueness  theorem  has  been  proved  that  requires  the  max-
imizing  solution  to be reached  at  a vertex  of  the  polyhedral  of  constrains.  To  facilitate  searching  for  the
solution  in  practice,  I use  the notion  of  potential-growth  indicator  and  prove  R0 and  R1,  the  known  indi-
cators,  to be  certain  linear  functions  of the  uncertain  fertility  rates  in a  general  class  of  projection  matrix
patterns.  To solve  a conjugate  linear  maximization  problem  under  the  same  constraints  as for  �1 is  both
theoretically  and  technically  simpler,  and  this  causes  a  practical  benefit  from  the  indication  along  with
calculation.

Second, the  former  uniform  (non-specific)  estimate  of the  upper  bounds  for  the  status-specific  fertility
rates  has  now  conceded  to the  age-stage-specific  estimates  inferred  from  a  special  case  study.  These
more sophisticated  constraints  produce  respectively  more  accurate  calibration,  hence  a  more  reliable
estimation  of  �1 as  the  growth  potential  inherent  in  the population  in a certain  environment  at  a given
time.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Calamagrostis model was developed as a matrix model (Logofet,
2002) for the population dynamics of Calamagrostis canescens,  a
perennial herbaceous plant dominating the grass layer of felled
forest areas in the temperate zone due to fast vegetative propa-
gation (Ulanova et al., 2002; Logofet et al., 2006; Logofet, 2008).
Individual plants were classified by age and stage – the chronolog-
ical age in years and the stage of ontogenesis along an ontogenetic
scale developed earlier (Zhukova and Ermakova, 1985; Ulanova and
Demidova, 2001). The life cycle graph (LCG) was correspondingly
defined on a finite two-dimensional lattice of age-stage-specific
statuses (Fig. 1). The LCG features what is called polyvariant
ontogeny,1 i.e., ‘the realization of diverse pathways in the ontoge-
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1 The term was first articulated as multivariant ontogeny in a monograph on plant
physiology by Sabinin (1963);  it was  thereafter used by Russian botanists in its
present form (Zhukova, 1986).

nesis’ (Zhukova and Komarov, 1990, p. 451). In the terms of LCG,
it means alternative transitions from a graph node, i.e., more than
one outgoing arrows, excepting the reproductive ones, at a node. It
was shown in a number of case studies that ‘polyvariant ontogeny
can be regarded as the most important, population-level mecha-
nism of adaptation contributing to coenopopulation heterogeneity
and providing for its persistence in the changing environment’
(Zhukova and Komarov, 1990, p. 459, and references therein).

Given an LCG, it defines both the components in the vector,
x(t), of population structure and the pattern of nonzero elements
allocation in the projection matrix L. The matrix projects the cur-
rent structure one time-step further according to the traditional,
vector-matrix equation

x(t + 1) = Lx(t), t = 0, 1, 2, . . . , (1)

of the matrix population model (see, e.g., Caswell, 2001). Matrix
elements represent vital rates or demographic parameters (Caswell,
2001).
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Fig. 1. The woodreed (Calamagrostis canescens)  LCG (life cycle graph) accounting for
stages of ontogeny and chronological age for the vegetative mode of reproduction.
The stages are: v, virginal; g, generative; ss, subsenile; s senile; the shorter initial,
plantule and immature,  stages are incorporated into the 1-year virginal one. Empty
boxes designate the age-stage states not observed in the field study, patterned boxes
indicate the states participating in reproduction; solid arrows represent ageing and
ontogenetic transitions in one year, dashed arrows correspond to reproduction;
Latin letters associated with arrows denote the age-stage-specific rates (Logofet,
2008).

In the Calamagrostis model, the vector x represents the age-stage
structure consisting of the 11 components:

x(t) = [v1, v2, v3, g2, g3, ss3, ss4, ss5, s4, s5, s6]
T
, (2)

and following the LCG of Fig. 1, the projection matrix takes on the
form (Logofet, 2002, 2008).

L =
[
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corresponding to the reproductive core of the LCG (Logofet et al.,
2006), and submatrix P:
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corresponding to transitions among the post-reproductive
groups.

The dominant eigenvalue, �1(L) > 0, of the projection matrix has
long been recognized, both in theory and practice, as the analogue
to the scalar intrinsic growth rate to apply for multidimensional
population growth (recent survey in Salguero-Gómez and de Kroon,
2010). When a projection matrix is reliably calibrated from data
in situ, its �1 can be calculated by a standard computer routine.
As a matter of mathematical fact (expression (8),  Section 2), �1
shows the rate at which the population vector increases along its

asymptotic direction (given by the corresponding eigenvector), i.e.,
after a great enough number of time steps under the constancy
of the matrix. At the same time, �1 is determined in a unique
algebraic way by the matrix entries, namely, by those transitions
and reproductions that occurred for the short calibration period.
This is why the dominant �, in spite of its asymptotic nature,
does determine the growth potential that the population possessed
in a particular environment on a certain interval of time. In this
sense, it does measure how the population adapts to its environ-
ment.

The data collected in the Calamagrostis case study were of
the ‘identified individuals’ type (Caswell, 2001, p. 134), yet with
unknown parents (Logofet, 2008). It means that the fate of each
individual plant was  monitored within a permanent sample plot
through successive years, but the parent plant could not be deter-
mined for any recruit without destroying the plot or having
recourse to genetic analysis. This brought uncertainty into the cal-
ibration of matrix L, hence into the estimation of �1(L), from the
data. In this paper, the calibration problem is reformulated for the
general case of “reproductive uncertainty” and reduced to a kind of
constraint nonlinear maximization problem under an assumption
that adaptation maximizes �1; the problem has a unique theoretical
solution.

This method was  used, among several other alternatives, to
calibrate the Calamagrostis matrix on the field data for two suc-
cessive years of observation (Logofet, 2008). The solution appeared
to depend essentially on the upper-bound constraint on fertility
rates. The constraint was assumed uniform for all the rates as an
ad hoc expert estimation in that study, although the method itself
did not require any uniformity in the constraints. The uniform esti-
mation has invoked a fare critique (Salguero-Gómez, 2012), and, in
this paper, it concedes to the status-specific upper bounds (Section
5) ensuing from a profound case study on vegetative propagation
in C. canescens (Demidova, 2004).

In the next three sections, I address the calibration problem
for a general class of matrix population models and formulate
an extremal principle to eliminate the uncertainty in fertil-
ity rates. It does so when a unique global solution exists to
the constraint nonlinear maximization problem. The correspond-
ing theorem is established for a general class of projection
matrices.

In practice, however, checking the theorem conditions for a
given matrix and data may  face technical obstacles, while the irre-
spective search for solution by means of a computer routine faces
one more kind of uncertainty: whether a local extremum returned
by the routine provides for the global one too, the issue requiring
further nontrivial study. I propose an auxiliary way to tackle the
problem that makes use of a scalar function of matrix elements
called a potential-growth indicator (PGI, Logofet and Klochkova,
2002; Logofet and Belova, 2008). Given a matrix L, this function
indicates, by its own value, the principal property of �1(L) being
greater or less than 1, without calculating the �1 itself. The net
reproductive rate R0 is a well-known example of PGI, and I pro-
pose another one, R1. These functions turn out to be linear with
regard to unknown fertility rates in a wide class of projection matri-
ces. To solve a linear extremal problem under the same constraints
as for �1(L) is both theoretically and technically simpler, and this
causes a practical benefit from the indication along with calcula-
tion.

2. General pattern of the projection matrix and its
potential-growth indicators

Since Leslie (1945) and Lefkovitch (1965) times, a vast variety
of patterns have appeared in the allocation of nonzero elements
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