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We combined the Bayesian inference and the Markov Chain Monte Carlo (MCMC) technique to quantify
uncertainties in the process-based soil greenhouse gas (GHG) emission models. The Metropolis—Hastings
sampling was examined by comparing four univariate proposal distributions (UPDs: symmet-
ric/asymmetric uniform and symmetric/asymmetric normal) and one multinormal proposal distribution
(MPD). Almost all the posterior parameter ranges from the MPD could be reduced to 1 order of magni-
tude. The simulation errors in CO; fluxes were much greater than those in N,O fluxes, which resulted in
a greater importance in model structure than in model parameters for CO, simulations. We suggested
deriving the covariance matrix of parameters for MPD from the sampling results of a UPD; and generating

a Markov chain by updating a single parameter rather than updating all parameters at each time. The
method addressed in this paper can be used to evaluate uncertainties in other GHG emission models.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Process-based mathematical models have been developed to
simulate the greenhouse gas (GHG) emissions as an important
part of the carbon-nitrogen dynamics in soils (Chen et al., 2008;
Ma and Shaffer, 2001; Smith et al.,, 1997; Wu and McGechan,
1998). However, studies on the uncertainties in these models and
model applications are limited (Wang and Chen, 2012). A subjec-
tive interpretation of uncertainty is “the degree of confidence that
a decision maker has about possible outcomes and/or probabilities
of these outcomes” (Refsgaard et al., 2007). Uncertainty assessment
is therefore important when models are used for decision-making
(Yohe and Oppenheimer, 2011). Uncertainty analysis not only gives
the uncertainty from different sources (i.e., model parameters,
model structure, model inputs and outputs), but also gives an eval-
uation of model performance and limitations.

Some studies on GHG models are concentrated on sensitiv-
ity analysis, which is one of the methods described in Refsgaard
et al. (2007). The uncertainty of the PnET-N-DNDC model was
evaluated by examining the sensitivity of the model outputs to
such environmental factors as temperature, precipitation, photo-
synthetically active radiation (PAR) and model input variables, e.g.,
N-concentration in precipitation, litter mass, soil organic carbon

* Corresponding authors at: Department of Biological Systems Engineering,
Washington State University, Pullman, WA 99164-6120, USA.
E-mail addresses: wangg@ornl.gov (G. Wang), chens@wsu.edu (S. Chen).

0304-3800/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ecolmodel.2012.09.010

(SOC), pH, and soil texture (Stange et al., 2000). The sensitivity anal-
ysis was conducted by changing one factor at a time while keeping
all others constant.

Monte Carlo is the most widely used method in uncertainty
anaylsis. Thorsen et al. (2001) used Monte Carlo to analyze the
propagation of uncertainty from input data to model output, and
found that the magnitude of uncertainty was closely associated
with the investigated spatial scale, i.e., smaller output uncertainty
on catchment scale than on grid level. The Monte Carlo technique
was also applied to assess the uncertainty of DenNit model out-
put with regard to parameterization (Reth et al., 2005). A Gaussian
distribution within one standard error of mean was used for param-
eter sampling. In the comparison of carbon and nitrogen dynamics
under conditions of conventional and diversified rotations, 64
parameter combinations were identified to test their impacts on
model outcomes in Tonitto et al. (2007). An uncertainty analysis
tool for the DNDC model allows for the selection of either the Monte
Carlo or the Most Sensitive Factor (MSF) method (Li et al., 1992a).
The MSF method involves running the model twice for each spatial
unit (e.g., grid cell or polygon) with the maximum and minimum
parameter values. These two runs generate two gas fluxes to form
an interval, which is assumed to cover the real gas flux with a high
probability. Using this uncertainty model, several highly sensitive
factors influencing DNDC model were identified (Li et al., 1992a,b).
The Monte Carlo analysis was also adapted to assess uncertainties
in soil N, O simulations from model input and structure of DAYCENT
(Del Grosso et al., 2010). Probability distribution functions (PDFs)
of major model inputs (weather, soil texture, and N applications)
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were assigned to quantify the uncertainty due to model inputs. The
structural uncertainty was a synthesis of parametric uncertainty
and model residual errors derived by an empirically based linear
mixed effect model (Ogle et al., 2007).

The aforementioned methods usually did not take into account
the probability distribution of parameters. Even if a distribution
was considered, e.g., a Gaussian distribution in Reth et al. (2005), it
was a priori. The posterior distribution of a parameter is more infor-
mative than a priori for modelers to use and evaluate a data-driven
model (Hartig et al.,2011). The Bayesian inference based on Markov
Chain Monte Carlo (MCMC) has been used to calibrate parame-
ters and quantify parametric uncertainty in the N,O submodel of
CERES-EGC (Lehuger et al., 2009), where the uniform probability
distributions were assigned as a priori for 11 global parameters.

The model structure in Del Grosso et al. (2010) referred to both
model parameters and structure (quantified by simulation errors);
whereas model parameters and structure were usually regarded as
two distinct sources for total uncertainty (Refsgaard, 1997; Wang
et al., 2009). Lehuger et al. (2009) focused on parametric uncer-
tainty and used the observation errors (standard deviations) of N, O
fluxes torepresent the simulation errors in the likelihood estimator.
However, the simulation errors may be treated as a latent variable
and incorporated into the Bayesian framework with model param-
eters for quantifying the model structural uncertainty (Wang and
Chen, 2012).

The objective of this paper was to evaluate model uncertainties
due to model parameters and structure by coupling the Bayesian
theory with MCMC method. Based on Bayes’ theorem, the posterior
distribution of both model parameters and model output variance
can be derived from the prior distribution and observed outputs,
and the 95% confidence intervals (Cls) of any output variables due
to parameter uncertainty and model structure uncertainty can be
estimated. The uncertainties from these two sources were also
compared with that due to observation errors in the GHG fluxes.
A soil GHG emission model (Appendix A) was used to test the pro-
posed uncertainty analysis method.

2. Material and methods
2.1. Bayesian inference

According to Bayesian inference (Hartig et al., 2011), the pos-
terior distribution 7(®1|y;), i.e., the likelihood function L(®|y;), of
parameter set ® can be generated from the prior distribution f{®)
conditioned on observations y;:
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where ©(0, oy) is a vector including the model parameter set (0)
and the standard deviation (o) depicting simulation errors; f{y:|®)
is the distribution function of model output variable y; conditioned
on ®; and ¢ is a time index. Generally, y; is a transformation of
the model output Y; to obtain a homoscedastic variance for the
simulation errors (Kuehl, 1999). The square-root transformation
(Engeland et al., 2005), i.e., y; = \/7[ is adopted in this study.

As for the prior distribution, a common approach is to assume
uniform priors (Iskrev, 2007), which means f{®) is a constant. In
addition, the model output (y;) is assumed to follow a normal dis-
tribution (Congdon, 2001):

f (yfl@) =1/ (may) - €Xp [—(J’r —%(9))2/ (203)] (2)
Thus
7 (Oe) f (y10) o< 1/0y - exp {—(yt ~yi(0)°/ (205)} (3)

of (vel©) -f () (1)

2 2
b4 (@* I}’r) 3 ok exp {_ [(}’t —y[(Q*)) ~ (Yt —}/t(ek)) ] } (@)

JCIAN 2(05)° 2(ok)?

When all the simulation errors are assumed to be independent,
the likelihood of the model outcome can be expressed as the prod-
uct of the likelihood of each individual outcome at each time step

n(@|y) :Hn (@D’t) (5)

2.2. Metropolis—-Hastings algorithm for MCMC

The Metropolis-Hastings (MH) algorithm is a typical Markov
Chain Monte Carlo (MCMC) sampling method to randomly sample
from the posterior distribution described by Eq. (5). The proce-
dure of MH can be found in many reports (Chumbley et al., 2007;
Hastings, 1970; Link and Barker, 2008; Mathe and Novak, 2007;
Tiana et al., 2007). An important criterion in MH is the acceptance
probability:
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where a(x’|x¥) denotes the acceptance probability; x¥ is the current
state of the chain; x” is the new state of the chain generated from
x¥ using a specified irreducible proposal distribution J(x'|x¥); and
7t(*) is the posterior distribution function defined by Eq. (5).

If we draw a random number (Z) from the uniform distribution
U(0,1), then a new state (i.e., k+1) of the chain can be determined
by

x*, if a(xfxk) > Z
xk+1 — (7)
Xk, if a (xxk) < Z

Four univariate (symmetric and asymmetric uniform, symmet-
ric and asymmetric normal) and one multivariate (symmetric
multinormal) proposal distributions were examined (see Appendix
B). In the transition from the current state to a new state, three
strategies may be used (Hastings, 1970). (i) All elements in the
parameter vector are changed. In this case, X" and x¥ are no longer
the one-dimensional parameters as in the previous four distribu-
tions, they are vectors containing d parameters. (ii) Only one of the
elements is randomly selected and changed. (iii) Only one element
is changed, and this element is selected in a fixed, rather than a
random, sequence.

It is often inefficient to sample small values in MCMC if a param-
eter ranges several orders of magnitude. Thus we conducted MCMC
pertaining to the logarithmic transformation of parameter values.
Hereafter the log-transformed parameter space is called the loga-
rithmic parameter space.

2.3. Generating random samples from multivariate normal
distribution

It is not as simple to implement a multivariate normal dis-
tribution as a univariate distribution. It is required to know the
covariance matrix in advance, and to randomly generate a vector,
not a single parameter value, from the distribution. Although the
true covariance matrix is unknown, it can be approximately esti-
mated from the parameter samples generated by MCMC using any
of the four univariate proposal distributions (UPDs). The algorithm
described in Hernadvolgyi (1998) was followed to generate random
vectors from a multinormal proposal distribution (MPD). In sum-
mary, the application of MPD in the MH algorithm may include six
steps:
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