
Ecological Modelling 253 (2013) 107– 116

Contents lists available at SciVerse ScienceDirect

Ecological  Modelling

jo ur n al homep ag e: www.elsev ier .com/ locate /eco lmodel

Evaluation  of  a  soil  greenhouse  gas  emission  model  based  on  Bayesian  inference
and  MCMC:  Parameter  identifiability  and  equifinality

Gangsheng  Wanga,b,∗,  Shulin  Chena,∗

a Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120, USA
b Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6301, USA

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 29 June 2012
Received in revised form 6 September 2012
Accepted 9 September 2012
Available online 22 November 2012

Keywords:
Bayesian inference
Condition number
Equifinality
Markov Chain Monte Carlo (MCMC)
Identifiability

a  b  s  t  r  a  c  t

Identifiability  and  equifinality  are  two interrelated  concepts  in mathematical  modeling.  The  derivation  of
the  Hessian  matrix  becomes  crucial  when  the  condition  number  is  used  as  a diagnostic  indicator  for  iden-
tifiability.  The  covariance-inverse  (CI)  method  was  proposed  to  derive  the  Hessian  matrix  via  the inverse
matrix of covariance.  The  covariance  matrix  is  calculated  directly  from  the  posterior  parameter  sam-
ples. Compared  with  two  existing  methods,  i.e.,  difference  quotients  (DQ)  and  quasi-analytical  (QA),  CI is
more  efficient  and  reliable.  The  CI  method  was  then  used  for identifiability  diagnosis  on  a soil  greenhouse
gas  emission  (SoilGHG)  model.  The  model  as  a whole  was  poorly  identified,  but  a  reduced  model  with
fewer  parameters  could  become  identifiable,  which  is called  “conditionally  identifiable”  in this  paper.  The
geometric  mean  condition  numbers  in  terms  of sorted  singular  values  of the  full Hessian  matrix  could
be adopted  as  criteria  to determine  at most  how  many  undetermined  parameters  might  be  included
in  an  identifiable  or  weakly  identifiable  model.  The  combinations  of  parameters  that  made  the  model
identifiable  were  also  determined  by  the  proposed  diagnosis  method.  We  addressed  the  importance  of
understanding  both  identifiability  and  equifinality  in ecosystem  modeling.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Model identifiability is the problem of determining whether
the parameters of a given mathematical model can be uniquely
(globally or locally) recovered from data (Serban and Freeman,
2001). A parameter having a value of x0 is globally identifiable
if and only if no other x1 within the feasible parameter space
gives the same value of the likelihood function. If the value of the
likelihood at x0 is unique in a sub-space containing x0, this param-
eter is said to be locally identifiable (Iskrev, 2007; Sorooshian and
Gupta, 1985). Theoretically, the number of identifiable parame-
ters is determined by the rank of the Hessian matrix (Sun, 2004;
Viallefont et al., 1998). If the Hessian matrix is positive defi-
nite, then the model structure is locally identifiable. However,
positive definite is often not true and other times impossible to
determine due to computing errors (Sorooshian and Gupta, 1985).
Generally, global identification analysis for non-linear models is
infeasible, and the Hessian matrix approach is only applicable for
local identification analysis (Iskrev, 2007). Many studies introduced
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the condition number to diagnose whether the Hessian matrix
was ill conditioned or not (Dee and da Silva, 1999; Dee et al.,
1999; Lebbe and Van Meir, 2000; Serban and Freeman, 2001; Sun,
2004; Viallefont et al., 1998). A problem with a low condition
number is said to be well-conditioned, while a problem with a
high condition number is said to be ill-conditioned (Iskrev, 2007;
Viallefont et al., 1998). Xia (1989) stated that non-identifiability
of a model could be caused by parameter interactions, the
lack of data, or the limitations of parameter optimization
methods.

Equifinality is a concept to reject the existence of a unique
optimal parameter set for a data-driven model (Beven and Freer,
2001; Wang and Chen, 2012). In other words, there may  coex-
ist multiple choices of parameter sets or model structures, which
can partially produce acceptable simulations (Wang et al., 2009b;
Williams et al., 2009). A previous paper (Wang and Chen, in press)
has provided evidence that equifinality did exist in the soil green-
house gas emission (SoilGHG) model (see Appendix A for model
description), although the equifinality could be reduced via uncer-
tainty analysis. As defined earlier, a model having a unique optimal
parameter set in a sub-space is locally identifiable. Thus, equifi-
nality and identifiability show apparently opposite characteristics
in model parameterization and assessment; however, they are
two interdependent concepts. On one hand, the idea of attaining
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identifiable parameters is part of the general working paradigm
for modelers (Beven and Freer, 2001). On the other hand, a com-
pletely identified model is difficult to realize because of incorrect
or defective descriptions of the real processes and characteristics in
environmental science and engineering, which means confronting
the phenomenon of equifinality is inevitable. The effort to strive
for identifiable parameters is the recognition of equifinality at the
same time. Equifinality cannot be completely eliminated, but can
be attenuated in some sense.

The derivation of the Hessian matrix becomes crucial when
the condition number is used as a diagnostic indicator of identi-
fiability. Three methods were usually used to estimate the Hessian
matrix: the analytical method, the quasi-analytical method and
the difference quotients. The analytical method is limited to the
conditions that the objective functions are explicitly derivable in
second order. However, the objective functions usually cannot
be obtained as an explicit function due to the implicit struc-
ture of most models. Therefore, the difference quotients (DQ)
method and the quasi-analytical (QA) method with numerical
approximation become useful in this circumstance. The DQ method
approximately computes the second order derivatives at the opti-
mal  points of the model parameters (Viallefont et al., 1998; Xu
and Vandewiele, 1995). Accordingly, an optimal parameter set
is required prior to the implementation of DQ. Equifinality in
a model structure could easily result in the failure of the DQ
method. The QA method estimates the Hessian by means of least-
squares fitting (Xia, 1989; Yam, 1997). The implementation of QA
is complex because of the fitting of a large amount of data and
variables. In addition, the significance and goodness (R2) of the
least-squares fitting directly influences the reliability of the Hessian
matrix.

The objective of this study was to evaluate the model iden-
tifiability and equifinality by developing a new method called
covariance-inverse (CI). The main characteristic of CI was  to esti-
mate the Hessian matrix by inversing the covariance matrix, which
could be calculated from the parameter samples using the multi-
normal proposal distribution (MPD) as described in Wang and
Chen (in press).  The CI method was also based on Bayesian infer-
ence and Markov Chain Monte Carlo (MCMC) technique (Knorr
and Kattge, 2005; Wang and Chen, in press). The same model
input and GHG data (see Appendix B) as described in Wang and
Chen (in press) and Wang et al. (2012a) were used. The results
from the CI method were also compared with those from DQ and
QA.

2. Methods

2.1. Diagnosis of model identifiability

The Hessian matrix of an objective function is not the only
parameter analysis tool available, but it is a useful diagnostic to
immediately present the identifiability of parameters (Bostick et al.,
2007; Kavetski et al., 2006; Viallefont et al., 1998). A common
expression of the objective function in modeling is the sum of
squared errors (SSE):

F(�) =
n∑

i=1

[yi − ŷi]
2 (1)

where yi and ŷi are observation data and simulation data, respec-
tively, at time i; and � = (�1, �2,. . .,  �k) is the parameter set including
k parameters.

Table 1
Diagnosis of structural identifiability by condition number (after Xia, 1989).

Condition number (�) 1/�  Identifiability

1≤ � ≤ 10 0.1 ≤ 1/�  ≤ 1 Identifiable
10  < � ≤ 200 0.005 ≤ 1/�  < 0.1 Weakly identifiable
�  > 200 0 ≤ 1/� < 0.005 Non-identifiable

The Hessian matrix (H) is the square matrix of second-order
partial derivatives of the objective function (F):
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The model identifiability can be measured by the matrix condi-
tion number (�) (Iskrev, 2007) defined as the ratio of the largest to
the smallest singular value of the matrix (Edelman, 2005; Iskrev,
2007; Sorooshian and Gupta, 1985).

� = �max

�min
(3)

The diagnosis of model identifiability was based on the magni-
tude of the condition number as shown in Table 1 (Xia, 1989).

2.2. Relationships between Hessian, covariance, and correlation
matrices

The covariance and correlation matrices of the parameters can
be estimated from the Hessian matrix (Sorooshian and Gupta, 1985;
Vandewiele et al., 1992; Xu and Vandewiele, 1995):∑

k×k
= 2�2H−1

k×k
(4)

� =
√

F(�)min

n − k
(5)

�(�i, �j) =
∑

(�i, �j)
�(�i) · �(�j)

(6)

�(�i) =
√∑

(�i, �i) (7)

where F(�)min is the minimum F(�); Hk×k is the Hessian of F(�)min;∑
k×k is the covariance matrix; �(�i, �j) is the correlation coefficient

between �i and �j; � is the model standard deviation; �(�i) is the
standard deviation of �i; n is the number of terms in Eq. (1); and k
is the number of parameters.

2.3. Estimation of Hessian matrix

If F(�) in Eq. (1) can be explicitly expressed as a function of �,
and F(�) is derivable in second order, the Hessian matrix can be
calculated directly by Eq. (2).  As previously mentioned, this is the
analytical method. However, it is impossible to analytically derive
the second-order derivatives for a complex non-linear model. That
is why  the DQ and QA methods have been developed. In this section,
the DQ and QA were introduced first, and then the CI method was
proposed.

2.3.1. Difference quotients method
The Hessian can be approximated at mesh nodes by DQ

(Viallefont et al., 1998). Such an approximation can be a forward,
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