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a  b  s  t  r  a  c  t

State-space  models  (SSMs)  are  now  the  tools  of  choice  for  analyzing  animal  tracking  data.  A  wide  variety
of  such  data  are  being  collected  worldwide  and  modeled  using  state-space  methods  to  better  understand
population  dynamics,  animal  behavior  and  physical  and  environmental  processes.  The  central  goal  of
such  analyses  is the  estimation  of  biologically  interpretable  static parameters.  Most  approaches  imple-
ment  some  form  of MCMC  or  Kalman  filter  to  estimate  these  parameters.  We  demonstrate  the utility  in
allowing time-varying  (rather  than  static)  parameters  to more  completely  capture  dynamic  features  of
the  processes  of interest,  in this  case  the  behavioral  dynamics  of  tracked  marine  animals.  We  develop
and  demonstrate  a  parameter  augmented  sequential  Monte  Carlo  method  (also  referred  to  as  an  aug-
mented  particle  filter  or particle  smoother  (PF  or PS))  that  allows  straightforward  estimation  of  both
static  and  time-varying  parameters  from  tracking  data. We  focus  specifically  on  temporally  irregular  GPS
data  describing  marine  animal  movement  with  the  goal  of better  understanding  the  underlying  behav-
ioral  dynamics.  Using  tracking  data from  California  sea  lions  (Zalophus  californianus)  we demonstrate  the
approach’s  ability  to  detect  subtle  yet  biologically  relevant  changes  in  behavior.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Electronic animal tracking technology is rapidly developing
such that increasingly fine scale observations of location, motion,
and internal physiological state are now possible. At the same time,
remote sensing technology has greatly increased the resolution
of corresponding environmental information (Costa et al., 2010b).
Unfortunately the development of statistical methods for analyzing
such data has proceeded more slowly, lagging behind technological
developments. Fortunately, because of their ability to separately
model process noise and observation error, state-space methods
have emerged as an accepted and leading framework for modeling
and analysis of animal tracking data.

In their simplest form SSMs involve linear processes and Gaus-
sian distributed errors, making it possible to formulate exact
likelihood equations based on the Kalman filter (KF) recursions.
This approach has been widely implemented to estimate both
parameters and states (often locations) from tracking data (e.g.
Nielsen et al., 2006; Johnson et al., 2008). However most tracking
data, particularly for animals, have elements of non-Gaussianity
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and nonlinearity making alternatives to the KF necessary. Approx-
imation schemes (e.g. extended and unscented KF) have been
developed (e.g. Johnson et al., 2008) and Markov chain Monte Carlo
(MCMC) methods successfully implemented to estimate parame-
ters and states in non-linear and/or non-Gaussian SSMs for tracking
data (Jonsen et al., 2005; Patterson et al., 2008). An excellent alter-
native to MCMC  and KF approaches are Sequential Monte Carlo
(SMC) methods. For ecological problems, these approaches have
not been widely implemented (Ionides et al., 2006; Dowd and Joy,
2011), but they have many advantages to MCMC and KF methods
including online or real time calculation, computational efficiency,
and relatively straightforward implementation of highly nonlinear
and/or non-Gaussian models.

SMC  methods are a set of simulation algorithms designed
for sequentially updating a posterior distribution or likelihood.
Commonly referred to as particle filters and smoothers (PFs and
PSs), they have been developed independently in many fields, as
described in Doucet et al. (2001).  PF and PS methods have been
demonstrated for state estimation in animal movement analyses
(e.g. Royer et al., 2005; Andersen et al., 2007), but they have not
been used to estimate movement parameters. In PFs and PSs, the
posterior distribution (or likelihood) is represented using a finite
set of samples which are generated from the model being fitted,
the particles, and these can be used to estimate any property of the
posterior distribution (or likelihood) in an ordinary Monte Carlo
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estimation framework. Techniques for performing this SMC updat-
ing include rejection sampling, importance sampling and sampling
importance resampling. Desirably, all allow online estimation and
are relatively simple to implement using interpreted languages
such as R or Matlab.

In an effort to capture behavioral dynamics from animal track-
ing data, SSMs have recently been demonstrated (Royer et al., 2005;
Jonsen et al., 2005) to switch among discrete behavioral modes
where each mode is described by a static set of parameters. How-
ever, behavioral modes must be explicitly constructed a priori as
part of the model structure. Usually only two and rarely three
modes are included before they confound or it becomes necessary
to define additional states based on the region used in addition
to the movement dynamics (Kim and Nelson, 1999; McClintock
et al., in press). Here we  show that by including time-varying
parameters in our SSMs we can obtain a richer picture of both
model performance and animal behavior than can be obtained
from so-called “switching models”. Gurarie et al. (2009) success-
fully estimated time-varying parameters from tracking data, but
that analysis used a mix  of standard time-series methods and did
not explicitly account for measurement error. Instead it required an
ad hoc pre-filtering of the data that was not robust to measurement
error.

We  describe and demonstrate an SSM with time-varying param-
eters that captures nonlinear time-varying behavioral dynamics
that were previously inaccessible from animal tracks. The model is
fitted using a Sequential Importance Resampling (SIR) PS with time-
varying parameters estimated via state augmentation (Doucet et al.,
2001; Durbin and Koopman, 2001). A similar method was  recently
demonstrated for animal diving data which possesses many conve-
nient properties (high resolution, precision, accuracy, and temporal
regularity) that are not generally available for animal tracking data
like that considered here (Dowd and Joy, 2011). The ability of our
augmented PS implementation to detect subtle yet biologically rel-
evant behavioral dynamics from data with much less convenient
characteristics than Dowd and Joy (2011) is demonstrated using 3
California sea lion tracked by GPS.

2. Methods

We implement an SSM with time-varying parameters to
describe both the behavioral dynamics (and associated noise) and
measurement error present in animal tracking data. The behav-
ioral dynamics are captured in the SSM’s process equation, in this
case a correlated random walk (CRW) that describes the move-
ment process of the animal through time. The observation equation
then relates predictions made by the process equation to the
observations. In the framework of an SSM fit using a PF or PS,
the observation equation becomes the importance distribution
from which the likelihood of simulations (particles) from the pro-
cess model are calculated. These likelihoods become the particle
weights.

2.1. Process equation

We use a CRW model similar to the single state first-difference
CRW model described in Jonsen et al. (2005) as the process equation
of our SSM:

dt = �t

(
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)
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�t∼wC(0,  ct) (2)

xt = xt−1 + dt (3)

where dt−1 is the displacement between unobserved locations xt−1
and xt−2. � t correlates both the magnitude and direction of con-
secutive displacements. � is the turn angle and is described by a
wrapped Cauchy (wC) distribution with the mean turn angle fixed
at 0 and an estimated concentration parameter ct ranging between
0 and 1. The wrapped Cauchy distribution is quite standard for turn
angle estimation (Turchin, 1998; Morales et al., 2004; Yackulic et al.,
2011), and is an important improvement on the CRW described
by Jonsen et al. (2005),  which used bounded uniform distribu-
tions to estimate turn angles. Bivariate Gaussian process error is
included with mean 0 and variance–covariance matrix ˙t; com-
posed of �2

lon,t
and �2

lat,t
and 0 covariance terms. � t, ct, � lat,t, and � lon,t

are 4 time-varying parameters, the inclusion of which represents
a more significant departure from Jonsen et al. (2005) and simi-
lar switching models. In all previous SSMs of animal movement,
static parameters have been estimated for entire tracks and behav-
ior was modeled as switching between discrete modes. Switching
models are powerful, but animal movement with continuous time-
dynamic parameters is a more general approach (Gurarie et al.,
2009).

2.2. Observation equation

The observation equation relates the unobserved locations xt

to the locations yt observed by GPS, where � = 0.036 km and is the
variance in latitude and longitude reported by Costa et al. (2010a):

yt = xt + N2
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])
(4)

We should note that a t-distribution or other long-tailed distri-
bution can be used rather than a simple Gaussian distribution.
However, we  found for our GPS data that a Gaussian worked better
than a t-distribution for the observation error equation. To fit our
model we used the SIR PS described by Arulampalam et al. (2002),
with a fixed lag of 15 time steps for the smoother. Time-varying
parameters were estimated by augmenting them to the state vec-
tor using methods outlined in Doucet et al. (2001) and Durbin and
Koopman (2001).  By augmenting the four time-varying parameters
(ct,� t, � lat,t, � lon,t) to the state vector, our process equation becomes:(
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)
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where �t = (ct, � t, � lat,t, � lon,t), and �t is the disturbance term for
parameter augmentation.

2.3. Parameter augmentation

The PS implemented here is based on importance resampling. In
this case, xk is simulated sequentially from some importance dis-
tribution fk(xk|x1:k−1, y1:k), and the whole trajectory x1:k is given
an importance weight wk. N such sequences are simulated from
the CRW process model in parallel, giving a weighted particle set
Sk = (x(i)

1:k, w(i)
k

), i = 1, N at each time point tk. We  use the observa-
tion equation (Eq. (4))  as the importance distribution with which
to assign the importance weight to each particle (and the parame-
ter set augmented to it) based on the tracking observation at that
time. As time evolves, the variance of particle weights will increase
and eventually the system will be represented by only one or a few
particles. A standard method to avoid this is to resample from Sk

with probabilities proportional to w(i)
k

. Resampling greatly reduces
particle degeneracy, but it can still occur. To assure it did not, we
assessed degeneracy by monitoring the particle variance and effec-
tive particle number at each time step.
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