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a  b  s  t  r  a  c  t

Species  distribution  models  use  small  samples  to  produce  continuous  distribution  maps.  The  question
of how  small  a sample  can  be to produce  an  accurate  model  generally  has  been  answered  based  on
comparisons  to maximum  sample  sizes  of 200  observations  or fewer.  In addition,  model  comparisons
often  are  made  with  the  kappa  statistic,  which  has  become  controversial.  Therefore,  we used  sample
sizes  ranging  from  30 to  2500  individuals  to model  16  tree  species  or species  groups  in  Minnesota’s
Laurentian  Mixed  Forest.  We  compared  all  smaller  sample  sizes  to  models  for 2500  records  and  then  1000
records  using  Cohen’s  kappa,  Pearson’s  r, Cronbach’s  alpha,  and two  intraclass  correlation  coefficients.
We  then  began  confirmation  of  our findings  by  repeating  the process  using  a smaller  extent  in a different
area, a portion  of Missouri’s  Central  Hardwoods.  Although  there  are disadvantages  to  using the kappa
statistic  and  intraclass  correlation  coefficients,  due  to  conversion  to categories  or  computation  limitations
respectively,  the  model  comparison  metrics  produced  similar  results.  Comparison  values  depend  on  the
maximum  sample  size,  and  at sample  sizes  roughly  around  10–20%  of the  maximum  sample  size,  values
will begin  to  decrease  more  rapidly.  Models  may  not  be  very  accurate  below  a  sample  size  of  200,  for
our study  areas,  extents,  and  grains.  Nonetheless,  models  based  on  small  sample  sizes  still  may  provide
information  for  rare species.  We  recommend  using  the  full  sample  available  for  modeling,  after  using  a
partial sample  for accuracy  assessment.  Future  research  is needed  to  confirm  our  findings  for  different
areas,  extents,  grains,  and  species.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Species distribution models use small samples from point loca-
tions to predict species occurrence probability for a continuous
spatial extent. The accuracy of species distribution models may
vary by species, statistical method, explanatory variables, and study
extent among other factors, although the unique ecological char-
acteristics of species, and consequent diverse distribution patterns,
may  explain the greatest variance (Guisan et al., 2007; Syphard
and Franklin, 2010). Nevertheless, the accuracy of species distri-
bution models also depends on both sample size and the method
for comparison of models.

Sample size is an important consideration for modeling accu-
racy, particularly for rare species where there are few samples.
Small sample sizes that produce inaccurate models may  provide
some information, but uncertainties associated with these models
are high. Although there is much research that compares ever-
changing statistical methods, establishing an appropriate sample
size as a base for appropriate comparisons has not been common.
Studies that have focused on sample size also have used small
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maximum sample sizes for comparison (e.g. Stockwell and
Peterson, 2002; Kadmon et al., 2003; Hernandez et al., 2006; Wisz
et al., 2008). Even though 100–200 individuals may  be more records
than available, models for 100 individuals may not be the best
standard.

To measure the agreement among species distribution maps,
Cohen’s kappa commonly is used (Cohen, 1960). Although the
kappa statistic is meant to account for chance agreement, the
definition of chance is uncertain (Vaughan and Omerod, 2005).
The kappa statistic also behaves paradoxically due to prevalence
(number of present cases) and location of species distributions
(McPherson et al., 2004; Jiménez-Valverde et al., 2008). Therefore,
other metrics to measure accuracy may  be preferable.

One option for measurement of model agreement is the familiar
interclass correlation coefficient. Interclass correlation coefficients,
such as the commonly used Pearson’s r or more rare Cronbach’s
alpha, are used to correlate different variables (such as height and
weight), and consequently, different variance. For Pearson’s r and
Cronbach’s alpha, the magnitude of difference between variables
does not matter. For example, pairwise values of 0.1 and 0.8, 0.2 and
0.9, and 0.3 and 1.0, would be correlated and yet are very different
values for species distribution maps.

Another option is intraclass correlation coefficients, which mea-
sure the relationship between the same variable from different
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sources (Shrout and Fleiss, 1979). This option may  be more suited
for model comparison, where the same variable (predicted prob-
ability) is compared and variation arises from methodological
choices, for example, when comparing predicted probabilities from
different statistical methods (i.e. different sources). Two  intra-
class correlation coefficient values may  be calculated: an absolute
agreement metric and a consistency metric. The absolute agree-
ment metric incorporates the different sources in the comparison,
whereas the consistency metric excludes variance from the source
(i.e. different methods), which is desirable when the magnitude of
difference is irrelevant. The consistency metric is similar to Pear-
son’s correlation, but based on an additive rather than a linear
transformation to relate lower and higher values (McGraw and
Wong, 1996).

Due to the importance of sample size and the choice of accuracy
assessment metric, we had two objectives. First, we  used much
larger sample sizes than previous studies to evaluate adequate
minimum sample sizes. We  examined sample sizes ranging from
30 to 2500 individuals of 16 tree species or species groups in a
roughly 5 million hectare area of Minnesota. Secondly, in order
to compare species distribution models developed under various
sample sizes, we needed to determine if the current option, the
kappa statistic, was as reliable as alternative options. We  com-
pared all smaller sample sizes to models based on 2500 records and
then 1000 records using Pearson’s correlation, Cronbach’s alpha,
Cohen’s kappa, and two intraclass correlation coefficients. We  then
evaluated the comparison metrics for differences to identify the
strengths and weaknesses of each metrics. To strengthen our find-
ings, we repeated the process for a smaller extent in the Central
Hardwoods of Missouri. Our work will provide guidance in selec-
tion of appropriate sample size and metrics for species distribution
models.

2. Methods

2.1. Study area

The primary study area covers about half of the 9.3 million
hectare Laurentian Mixed Forest province in northeastern Min-
nesota (Fig. 1; National Hierarchical Framework of Ecological Units;
ECOMAP, 1993). In the Laurentian Mixed Forest province, land-
forms (e.g. moraines and wetlands) were created by glaciers (Albert,
1995). Annual precipitation increases from about 55 cm in the west
to 80 cm in the east and long, cold winters prevail (mean annual
temperature about 2 ◦C).

2.2. Tree surveys

The USDA Forest Service Forest Inventory and Analysis (FIA) sur-
veys fixed plots (each composed of four subplots that are a total
of 0.065 ha) during a five year cycle. The latest complete cycle was
during 2004–2008 for Minnesota’s Laurentian Mixed Forest (Fig. 1).
The USDA Forest Service joined our predictor variables to plots (in
a table but based on accurate spatial locations) for modeling and
prediction because the available FIA plot locations are fuzzed (i.e.
location moved) and swapped to protect landowner privacy.

We selected tree species that had at least 2500 individuals.
The species were American Basswood (Tilia Americana),  balsam fir
(Abies balsamea), balsam poplar (Populus balsamifera), black ash
(Fraxinus nigra); black spruce (Picea mariana), bur oak (Quercus
macrocarpa), jack pine (Pinus banksiana),  northern white cedar
(Thuja occidentalis), paper birch (Betula papyrifera),  red maple (Acer
rubrum), red pine (Pinus resinosa), sugar maple (A. saccharum),
tamarack (Larix laricina), and quaking aspen (Populus tremuloides).
We also created two mixed species groups by genus, aspens

Fig. 1. Primary study area (shaded black), about 5 million ha in the Laurentian Mixed
Forest of Minnesota.

(Populus tremuloides, P. balsamifera) and maples (Acer rubrum, A.
saccharum).

2.3. Spatial units and environmental variables

Our spatial units were Soil Survey Geographic (SSURGO)
Database (Natural Resources Conservation Service;
http://soildatamart.nrcs.usda.gov) polygons. Soil surveys have
not been completed in Cook, Crow Wing, Isanti, Koochiching,
Lake, Pine, and St. Louis counties, leaving a study extent of about
4,895,238 ha (Fig. 1). After removal of polygons that were water
or otherwise miscellaneous areas e.g. mines, pits, dumps), there
were 310,000 soil polygons.

We  used sixteen predictor variables that are important for
tree presence. For soil variables, we determined values based
on polygons with similar characteristics by county (map units;
2364 map  units total). Soil variables were (1) drainage class (very
poorly drained to excessively drained), (2) hydric soil presence
class, (3) water holding capacity (cm/cm), (4) pH, (5) organic mat-
ter (%), (6) clay (%), and (7) sand (%). We  intersected two  more
categorical variables to each soil polygon: (8) ecological subsec-
tion, which is an ecological classification (ECOMAP, 1993), and (9)
bedrock geology. From a 30 m DEM (digital elevation model), we
determined mean values of terrain variables by a unique unit of
map  unit, land type association (an ecological classification), and
bedrock geology, which contained spatially distinct soil polygons
that averaged about 210 ha, and became our unit for predicted
probabilities. Terrain variables were (10) elevation (m), (11) slope
(%), (12) transformed aspect (1 + sin(aspect/180/3.14 + 0.79; Beers
et al., 1966) (13) solar radiation (0700–1900 in 4 h intervals on sum-
mer solstice for re-sampled 60 m DEM), (14) topographic roughness
(Sappington et al., 2007), (15) wetness convergence, and (16) topo-
graphic position index (T. Dilts; http://arcscripts.esri.com).

2.4. Sample sizes and statistical analysis

We  randomly selected 2500, 1250, 1000, 5000, 200, 100, 50 and
30 polygons for each tree species or tree species group for mod-
eling. We  reserved the rest of the present samples for accuracy
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