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We study the notion of “cancellation-free” circuits. This is a restriction of XOR circuits, but 
can be considered as being equivalent to previously studied models of computation. The 
notion was coined by Boyar and Peralta in a study of heuristics for a particular circuit 
minimization problem. They asked how large a gap there can be between the smallest 
cancellation-free circuit and the smallest XOR circuit. We present a new proof showing 
that the difference can be a factor Ω(n/ log2 n). Furthermore, our proof holds for circuits 
of constant depth. We also study the complexity of computing the Sierpinski matrix using 
cancellation-free circuits and give a tight Ω(n log(n)) lower bound.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let F2 be the field of order 2, and let Fn
2 be the n-dimensional vector space over F2. For n ∈ N, we let [n] = {1, . . . , n}. 

A Boolean function f : Fn
2 → F

m
2 is said to be linear if there exists a Boolean m × n matrix A such that f (x) = Ax for every 

x ∈ F
n
2. This is equivalent to saying that f can be computed using only XOR gates.

An XOR circuit (or a linear circuit) C is a directed acyclic graph. There are n nodes with in-degree 0, called the inputs. 
All other nodes have in-degree 2 and are called gates. There are m nodes which are called the outputs; these are labeled 
y1, . . . , ym . The value of a gate is the sum of its two children (addition in F2, denoted ⊕). The circuit C , with inputs 
x = (x1, . . . , xn), computes the m × n matrix A if the output vector computed by C , y = (y1, . . . , ym), satisfies y = Ax. In 
other words, output yi is defined by the ith row of the matrix. The size of a circuit C is the number of gates in C . The 
depth is the number of gates on a longest directed path from an input to an output. For simplicity, we will let m = n unless 
otherwise explicitly stated. For a matrix A, let |A| be the number of nonzero entries in A.

Our contributions In this paper we deal with a restriction of XOR circuits called cancellation-free circuits, coined in [2], 
where the authors noticed that many heuristics for finding small XOR circuits always produce cancellation-free XOR circuits. 
They asked the question of how large a separation there can be between these two models. Recently, Gashkov and Sergeev 
[3] showed that the work of Grinchuk and Sergeev [4] implied a separation of Ω( n

log6 n log log n
). An improved separation 

of Ω( n
log2 n

) follows from Lemma 4.1 and Lemma 4.2 in [5], although this implied separation was not published until 
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Fig. 1. Two circuits computing the matrix A. The circuit on the left is cancellation-free, and has size 5 – one more than the circuit on to the right.

recently [6]. We present an alternative proof of the same separation. Our proof is based on a different construction and 
uses communication complexity in a novel way that might have independent interest. Like the separation implied in the 
work [6], but unlike the separations demonstrated in [3,7], our separation holds even in the case of constant depth circuits. 
We conclude that many heuristics for finding XOR circuits do not approximate better than a factor of Θ( n

log2 n
) of the 

optimal. We also study the complexity of computing the Sierpinski matrix using cancellation-free circuits. We show that 
the complexity is exactly 1

2 n log n. Furthermore, our proof holds for OR circuits. As a corollary to this we obtain an explicit 
matrix where the smallest OR circuit is a factor Θ(log n) larger than the smallest OR circuit for its complement.

We also study the complexity of computing the Sierpinski matrix (described later), and show a tight 1
2 n log n lower bound 

for OR circuits and cancellation-free circuits. This results follows implicitly from the work of Kennes [8], however our proof 
is simpler and more direct. Also we hope that our proof can be strengthened to give an ω(n) lower bound for XOR circuits 
for the Sierpinski matrix. A similar lower bound was shown independently by Selezneva in [9,10].

2. Cancellation-free XOR circuits

For XOR circuits, the value computed by every gate is the parity of a subset of the n variables. That is, the output of 
every gate u can be considered as a vector κ(u) in the vector space Fn

2, where κ(u)i = 1 if and only if xi is a term in the 
parity function computed by the gate u. We call κ(u) the value vector of u, and for input variables define κ(xi) = e(i) , the 
unit vector having the ith coordinate 1 and all others 0. It is clear by definition that if a gate u has the two children w, t , 
then κ(u) = κ(w) ⊕ κ(t), where ⊕ denotes coordinate-wise addition in F2. We say that an XOR circuit is cancellation-free
if for every pair of gates u, w where u is an ancestor of w , then κ(u) ≥ κ(w), where ≥ denotes the usual coordinate-wise 
partial order. These are also called SUM circuits in [7,6].

If this is satisfied, the circuit never exploits the F2-identity, a ⊕ a = 0, so things do not “cancel out” in the circuit.
Although it is not hard to see that cancellation-free circuits is equivalent to addition chains [11,12] and “ensemble 

computations” [13], we stick to the term “cancellation-free”, since we will think of it as a special case of XOR circuits.
For a simple example demonstrating that cancellation-free circuits indeed are less powerful than general XOR circuits, 

consider the matrix

A =
⎛
⎜⎝

1 1 0 0
1 1 1 0
1 1 1 1
0 1 1 1

⎞
⎟⎠ .

In Fig. 1, two circuits computing the matrix A are shown, the circuit on the right uses cancellations, and the circuit on the 
left is cancellation-free, and has one gate more. For this particular matrix, any cancellation-free circuit must use at least 5
gates.

A different, but tightly related kind of circuits is OR circuits. The definition is exactly the same as for XOR circuits, 
but with ∨ (logical OR) instead of ⊕, see [14,6,13]. Cancellation-free circuits is a special case of OR circuits and every 
cancellation-free circuit can be interpreted as an OR circuit for the same matrix, as well as an XOR circuit.

For a matrix A, we will let C⊕(A), CCF(A), C∨(A) denote the smallest XOR circuit, the smallest cancellation-free circuit 
and the smallest OR circuit computing the matrix A.

By the discussion above, the following is immediate:

Proposition 1. For every matrix, A, C∨(A) ≤ CCF(A).

This means in particular that any lower bound for OR circuits carries over to a lower bound for cancellation-free circuits. 
However, the converse does not hold in general [7]. A simple example showing this is the matrix
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