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In highly dynamic systems (such as wireless mobile ad hoc networks, robotic swarms, 
vehicular networks, etc.) connectivity does not necessarily hold at a given time but 
temporal paths, or journeys, may still exist over time and space, rendering computing 
possible; some of these systems allow waiting (i.e., pauses at intermediate nodes, also 
referred to as store-carry-forward strategies) while others do not. These systems are 
naturally modeled as time-varying graphs, where the presence of an edge and its latency 
vary as a function of time; in these graphs, the distinction between waiting and not waiting 
corresponds to the one between indirect and direct journeys.
We consider the expressivity of time-varying graphs, in terms of the languages generated 
by the feasible journeys. We examine the impact of waiting by studying the difference 
in the type of language expressed by indirect journeys (i.e., waiting is allowed) and by 
direct journeys (i.e., waiting is unfeasible), under various assumptions on the functions that 
control the presence and latency of edges. We prove a general result which implies that, 
if waiting is not allowed, then the set of languages Lnowait that can be generated contains 
all computable languages when the presence and latency functions are computable. On 
the other end, we prove that, if waiting is allowed, then the set of languages Lwait

contains all and only regular languages; this result, established using algebraic properties 
of quasi-orders, holds even if the presence and latency are unrestricted (e.g., possibly non-
computable) functions of time.
In other words, we prove that, when waiting is allowed, the power of the accepting 
automaton can drop drastically from being at least as powerful as a Turing machine, to 
becoming that of a Finite-State Machine. This large gap provides an insight on the impact 
of waiting in time-varying graphs.
We also study bounded waiting, in which waiting is allowed at a node for at most d time 
units, and prove that Lwait[d] = Lnowait; that is, the power of the accepting automaton 
decreases only if waiting time is unbounded.
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1. Introduction

1.1. Highly dynamic networks and time-varying graphs

The study of highly dynamic networks focuses on networked systems where changes in the topology are extensive, possibly 
unbounded, and occur continuously; in particular, connectivity might never be present. For example, in wireless mobile ad 
hoc networks, the topology depends on the current distance between mobile nodes: an edge exists between them at a given 
time if they are within communication range at that time. Hence, the topology changes continuously as the movements of 
the entities destroy old connections and create new ones. These changes can be dramatic; connectivity does not necessarily 
hold, at least with the usual meaning of contemporaneous end-to-end multi-hop paths between any pair of nodes, and the 
network may actually be disconnected at every time instant. These infrastructure-less highly dynamic networks, variously 
called delay-tolerant, disruptive-tolerant, challenged, epidemic, opportunistic, have been long and extensively investigated by 
the engineering community and, more recently, by distributed computing researchers (e.g. [38,44,47,51]). Some of these 
systems provide the entities with store-carry-forward-like mechanisms (e.g., local buffering) while others do not. In pres-
ence of local buffering, an entity wanting to communicate with a specific other entity can wait until the opportunity of 
communication presents itself; clearly, if such buffering mechanisms are not provided, waiting is not possible.

These highly dynamic networks are modeled in a natural way as time-varying graphs or evolving graphs (e.g., [18,27]). In a 
time-varying graph (TVG), edges between nodes exist only at certain times (in general, unknown to the nodes themselves) 
specified by a presence function. Another component of TVGs is the latency function, which indicates the time it takes to 
cross a given edge at a given time. The lifetime of a TVG can be arbitrary, that is time could be discrete or continuous, and 
the presence and latency functions can vary from finite automata to Turing computable functions and even non-computable 
functions.

A crucial aspect of time-varying graphs is that a path from a node to another might still exist over time, even though at 
no time the path exists in its entirety; it is this fact that renders computing possible. Indeed, the notion of “path over time”, 
formally called journey, is a fundamental concept and plays a central role in the definition of almost all concepts related 
to connectivity in time-varying graphs. Examined extensively, under a variety of names (e.g., temporal path, schedule-
conforming path, time-respecting path, trail), informally a journey is a walk1 < e1, e2, . . . , ek > with a sequence of time 
instants < t1, t2, . . . , tk > where edge ei exists at time ti and its latency ζi at that time is such that ti+1 ≥ ti + ζi .

The distinction between absence and availability of local buffering in highly dynamic systems corresponds in time-
varying graphs to the distinction between a journey where ∀i, ti+1 = ti + ζi (a direct journey), and one where it may happen 
that, for some i, ti+1 > ti + ζi (an indirect journey).

In this paper, we are interested in studying the difference between direct and indirect journeys, that is the difference 
that the possibility of waiting creates in time-varying graphs.

1.2. Main contributions

In a time-varying graph G , a journey can be viewed as a word on the alphabet of the edge labels; in this light, the 
class of feasible journeys in G defines a language L f (G) expressed by G , where f ∈ {wait, nowait} indicates whether or not 
indirect journeys are allowed. In this paper we examine the complexity of time-varying graphs in terms of their expressivity, 
that is of the language defined by the journeys, and establish results showing the difference that the possibility of waiting 
creates.

We will investigate and demonstrate the varying expressivity we get in the non-waiting case and the constant expressivity 
we get in the waiting case.

Given a class of functions �, we consider the class U� of TVGs whose presence and latency functions belong to �. More 
precisely, we focus on the sets of languages L�

nowait = {Lnowait(G) : G ∈ U�} and L�
wait = {Lwait(G) : G ∈ U�} expressed when 

waiting is, or is not allowed. For each of these two sets, the complexity of recognizing any language in the set (that is, the 
computational power needed by the accepting automaton) defines the complexity of the environment.

We first study the expressivity of time-varying graphs when waiting is not allowed, that is the only feasible journeys are 
direct ones. We show that, for any computable language L, there exists a time-varying graph G , with computable functions 
for presence and latency, such that Lnowait(G) = L. We actually prove the stronger result that, given a class of functions �, 
the set L�

nowait contains the languages recognizable by �.
We next examine the expressivity of time-varying graphs if indirect journeys are allowed. We prove that, for any class �, 

L�
wait is precisely the set of regular languages; even if the presence and latency functions are arbitrarily complex (e.g., 

non-computable) functions of time, only regular languages can be generated. The proof is algebraic and based on order 
techniques, relying on a theorem by Harju and Ilie [34] that enables to characterize regularity from the closure of the 
sets from a well quasi-order. In other words, we prove as a main corollary that, when waiting is allowed, the power of 
the accepting automaton drops drastically from being (possibly) as powerful as a Turing Machine, to becoming that of a 
Finite-State Machine.

1 A walk is a path with possibly repeated edges.
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