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We study the problem of generating a large sample from a data stream S of elements 
(i, v), where i is a positive integer key, v is an integer equal to the count of key i, and the 
sample consists of pairs (i, Ci) for Ci = ∑

(i,v)∈S v . We consider strict turnstile streams and 
general non-strict turnstile streams, in which Ci may be negative. Our sample is useful for 
approximating both forward and inverse distribution statistics, within an additive error ε
and provable success probability 1 − δ.
Our sampling method improves by an order of magnitude the known processing time of 
each stream element, a crucial factor in data stream applications, thereby providing a feasi-
ble solution to the sampling problem. For example, for a sample of size O (ε−2 log (1/δ)) in 
non-strict streams, our solution requires O ((log log(1/ε))2 + (log log(1/δ))2) operations per 
stream element, whereas the best previous solution requires O (ε−2 log2(1/δ)) evaluations 
of a fully independent hash function per element.
We achieve this improvement by constructing an efficient K -elements recovery structure 
from which K elements can be extracted with probability 1 − δ. Our structure enables our 
sampling algorithm to run on distributed systems and extract statistics on the difference 
between streams.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the turnstile data stream model [23], the general representation of data streams, the data is a sequence of N elements 
composed of a key i and a count v , (i, v) ∈ U × R , where U = {1, . . . , u} and R = {−r, . . . , r}. The vector of cumulative 
counts C = (C1, . . . , Cu) starts as C = 0 and for every input element (i, v) it is updated by Ci ← Ci + v . Let C(t) be the state 
of C after processing the t ’th element in the stream. For every t, i, Ci(t) ∈ R .

The function f : U → R where f (i) = Ci describes the forward distribution of the stream. A common use of data stream 
algorithms is to calculate stream statistics on f , or find its frequent items. Obtaining a synopsis of the data by sampling 
the stream and then querying the sample is a basic technique to perform this task. For example, in order to approximate 
queries on f , we can use an ε-approximate sampling algorithm for ε ∈ (0, 1), which outputs S ⊆ {(i, f ′(i)): f (i) �= 0}, where 
f ′(i) ∈ [(1 − ε) f (i), (1 + ε) f (i)]. Note that we consider a key i with Ci = 0 to be a deleted element that should not affect 
stream statistics, and therefore must not appear in a sample of the stream.

However, another approach should be taken when answering queries on the inverse distribution function f −1, defined as 
f −1(C) = |{i:Ci=C}|

|{i:Ci �=0}| for C �= 0, i.e. the fraction of distinct keys with a cumulative count C . In order to answer queries on f −1, 
an exact sample S ⊆ {(i, f (i)): f (i) �= 0} is required. To illustrate this, assume f −1(C) = α for a fraction α ∈ (0, 1), and in the 
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ε-approximate sample for every i with f (i) = C the approximated cumulative count is (1 + ε)C . In that case one might get 
f −1(C) = 0 instead of α, a significant change to f −1.

The algorithms we present in this paper provide an exact sample for strict turnstile and non-strict turnstile data streams, 
defined as follows: In the strict turnstile model, ∀t, i, Ci(t) ≥ 0, while in the non-strict turnstile model, Ci(t) may obtain 
negative values. A sample S drawn at time t is S(t) ⊆ {(i, Ci(t)): Ci(t) �= 0}. To simplify the notation we consider sampling 
only at the end of the stream, and denote Ci = Ci(N) and S = S(N).

Since the sample S that we generate is exact, it is useful for calculating both forward and inverse distribution statistics. 
Its applications include network traffic analysis [20] and geometric data streams [8,9]. For example, in [20] inverse distri-
bution statistics were used for earlier detection of content similarity, an indicator of malicious IP traffic. Another use is 
detecting DoS attacks, specifically SYN floods, which are characterized as flows with a single packet.

Previous work. Most previous work on sampling dynamic streams that support deletions was limited to approximating the 
forward distribution [3,13]. Works on the inverse distribution include a restricted model where ∀i, Ci ∈ {0, 1} [12,28], and 
minwise-hashing, which samples the set of keys uniformly but does not support deletions [6]. The work in [14] supports 
only a few deletions.

Inverse distribution queries in streams with multiple deletions were supported in a work by Frahling et al. [8,9], who 
developed a solution for strict turnstile data streams and used it in geometric applications. Cormode et al. [5] developed a 
solution for both strict turnstile and non-strict turnstile streams. However, they did not analyze the required randomness 
or the algorithm’s error probability in the non-strict model. Lp samplers, and specifically L0 samplers for non-strict streams 
were built by Monemizadeh and Woodruff [22] and Jowhari et al. [18], however [18] lacked the time analysis of the sparse 
recovery.

Our results. Previous works [5,8,9,18,22] constructed basic structures for sampling only a single element. For applications 
that require a sample of size K , one has to use O (K ) independent instances of their structure, obtaining a K -size inde-
pendent sample. Running the sampling procedure O (K ) times in parallel means that each stream element is inserted as 
an input to O (K ) instances, requiring a long time to process. To illustrate this, consider stream queries which require a 
sample of size K = Ω( 1

ε2 log 1
δ
), where the results are ε-approximated, and 1 − δ is the success probability of the process. 

For ε = 10−2 and δ = 10−6, the number of operations per stream element is multiplied by about 200,000. The structures of 
[5,8,9,18,22] cannot be used to generate a K -size sample due to this unfeasible process load.

To solve this problem, we construct a single K -elements recovery structure from which an entire sample of size K can be 
extracted. The problem of K -recovery has been studied in different variants. For example, it is similar to the sparse recovery 
problem [15,26] and to IBLT [16]. In sparse recovery we have a signal that is sparse or consists of a small number of high 
magnitude elements and the rest of the elements are negligible. The goal is to acquire a small amount of information about 
this signal in a linear, nonadaptive way and then use that information to quickly recover the high magnitude elements. The 
difference between our problem and sparse recovery is there is no tail noise and we limit the amount of randomness. IBLT 
is a randomized data structure that supports insertion, deletion, lookup of key-value pairs and a full listing of the pairs it 
contains with high probability, as long as the number of key-value pairs does not exceed a certain threshold. The IBLT is 
based on a set of random hash functions that determine where key-value pairs are stored, and a set of counters in each 
array cell that resolve collisions. In comparison to IBLT, our solution achieves 1 −δ success probability in a shorter processing 
time, and with reduced randomness as opposed to IBLT’s fully independent hash functions. Hence, our structures, especially 
ε-FRS (ε-Full Recovery Structure), may be of independent interest.

Our contributions are as follows:

– We reduce significantly the processing time per stream element. Our optimization enables applications that were pre-
viously limited to gross approximations to obtain much more accurate approximations in feasible time.

– We present solutions for both strict and non-strict turnstile data streams. Our algorithms have proven success probabil-
ity for non-strict streams. We accomplish this by developing a structure called the Non-strict Bin Sketch.

– We provide efficient algorithms in terms of the randomness requirements. Our algorithms do not require fully indepen-
dent or min-wise independent hash functions, or pseudorandom generators which have a drawback of large evaluation 
time, or are impractical to use due to the memory required to represent them. The use of fully independent hash 
functions is impractical because they require O (u log(r)) bits just to keep a function of the form h : [u] → [r]. Min-
wise independent hash functions, or their ε-min-wise approximation, require O (log(1/ε))-wise independence and are 
evaluated in O (log(1/ε)) time. Pseudorandom generators such as Nisan’s generator take log(n) time to evaluate.

– To the best of our knowledge, we are the first to reduce time complexity of hash functions by choosing Θ(log 1
δ
)-wise 

independent hash functions and evaluating them efficiently with the multi-point evaluation method. We generate a 
sample with 1 − δ success probability for any δ > 0. Our method outperforms the traditional approach of increasing 
the success probability from a constant to 1 − δ by Θ(log 1

δ
) repetitions. The traditional approach takes O (log 1

δ
) time, 

while our approach reduces processing time to O ((log log 1
δ
)2).
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