Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ecolmodel

Modelling above- and below-ground mass loss and N dynamics in wooden dowels (LIDET) placed across North and Central America biomes at the decadal time scale

Amanda C. Smith^a, Jagtar S. Bhatti^b, Hua Chen^c, Mark E. Harmon^d, Paul A. Arp^{a,*}

^a Faculty of Forestry and Environmental Management, University of New Brunswick, 28 Dineen Drive, PO Box 44555, Fredericton, New Brunswick E3B 6C2, Canada

^b Northern Forestry Centre, 5320 - 122nd Street, Edmonton, Alberta, T6H 3S5 Canada

^c Biology Department, University of Illinois at Springfield, Springfield, IL 62703H, USA

^d Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331-5752, USA

ARTICLE INFO

Article history: Received 5 March 2010 Received in revised form 1 September 2010 Accepted 14 September 2010 Available online 14 October 2010

Keywords: Mass Nitrogen Wooden dowels Tropical Temperate Boreal forests Grasslands Wetlands Tundra

ABSTRACT

This article focuses on modelling above and below-ground mass loss and nitrogen (N) dynamics based on the wooden dowels (Gonystylus bancanus [Miq.] Kurz) of the decadal Long-term Intersite Decomposition Experiment (LIDET) data. These dowels were placed at 27 locations across North and Central America, involving tropical, temperate and boreal forests, grasslands, wetlands and the tundra. The dowel, inserted vertically into the soil with one half remaining exposed to the air, revealed fast mass and N losses under warm to humid conditions, and slow losses under wet as well as cold to dry conditions. The model formulation, referred to as the Wood Decomposition Model, or WDM, related these losses to (i) mean annual precipitation, mean monthly January and July air temperatures, and (ii) mean annual actual evapotranspiration (AET) at each location. The resulting calibrations conformed well to the time-in-field averages for mass remaining by location: R² = 0.83 and 0.90 for the lower and upper parts, respectively. These values dropped, respectively, to 0.41 and 0.55 for the N concentrations, and to 0.28 and 0.43 for N remaining. These reductions likely refer to error propagation and to as yet unresolved variations in N transference into and out of the wood specific to each individual dowel location. Recalibrating the model parameters by ecosystem type reduced the R^2 values for actual versus best-fitted mass loss by about 0.15. Doing the same without location- or ecosystem-specific adjustments reduced the R^2 values further, by about 0.3. © 2010 Elsevier B.V. All rights reserved.

1. Introduction

Predicting the rate at which wood decays and mineralizes is important for assessing past, current and future ecosystem-level carbon (C) and nitrogen (N) responses under varying and changing climate conditions (Laiho and Prescott, 2004). Quantifying these processes, however, is a complex task because of their dependence on wood type, size, shape, density, lignin content, presence of wood preservatives, configuration of placement, wood-consuming organisms at work, and antecedent conditions (Harmon et al., 1995; Stevens, 1997). For example, woody debris that remains dry mineralizes fairly slowly. In contrast, wood that remains moist decays more quickly by providing optimal conditions for the entry and growth of decay-causing organisms such as fungi, bacteria, insects

* Corresponding author. Tel.: +1 506 453 4931; fax: +1 506 453 3538. E-mail addresses: lagtar.Bhatti@NRCan-RNCan.gc.ca (J.S. Bhatti).

hchen40@uis.edu (H. Chen), Mark.Harmon@oregonstate.edu (M.E. Harmon), arp1@unb.ca, arp1@unb.ca (P.A. Arp). and wood dwellers. Wood placed into the ground may decay even more quickly than wood resting on the ground, depending on differences in moisture content and the physical, chemical and biological conditions of the adjacent soil (Busse, 1994; van der Wal et al., 2007). With regard to N, decaying wood has low N concentrations prior to decay (Hungate, 1940). Hence, transference of exogenous N from adjacent soil and decaying litter is likely to occur on account of physico-chemical processes such as diffusion from N-enriched soil solution into wood and biological processes such as N₂ fixation, and transfer of exogenous N and other nutrients into the wood via invading organisms, especially fungal mycelia (Becker, 1971; Ausmus, 1977; Freya et al., 2003). Ecologically, decaying wood may therefore provide temporary storage for N and other nutrients for later use (Boddy and Watkinson, 1995; Pyle and Brown, 1999).

To gain insight into the overall mass and N dynamics in decaying wood, recent forest litter studies dealing with forest litter decay across widely ranging site and climate conditions have also produced data for wood decay. Among these studies are: the Long-term Intersite Decomposition Experiment in the United States (LIDET, 1995; Parton et al., 2007; Adair et al., 2008), the Decomposition

^{0304-3800/\$ -} see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.ecolmodel.2010.09.018

Study in Europe (DECO: Jansson and Reurslag, 1992), the Canadian Intersite Decomposition Experiment (CIDET: Trofymow and CIDET Working Group, 1998; Preston et al., 2009a,b) and the International Research Group on Wood Preservation (IRG, Jurgensen et al., 2003). In general, wood represents a large portion of annual forest litter accumulations on top or within the existing forest floor, and within the mineral soil in the form of decaying roots (Harmon et al., 1986; Scheu and Schauermann, 1994). Local forest disturbances due to, e.g., fire, insects, storms, harvesting and fires add to this accumulation in the form of snags, harvest residues, and wholetree blow-down. Under moist and warm conditions, which are also associated with high rates of evapotranspiration, rates of wood decay and N gains and losses in fallen or soil-emplaced wood would be highest, and would be least under consistently cold and dry conditions (Griffith and Boddy, 1991; Meentemeyer, 1978; Currie et al., 2010). It is, however, not known to what extent wood decomposition and N uptake and losses influence one another, and how these rates vary above and below the ground within and across ecosystems from tropical to arctic biomes.

The objective of this article is to quantify and model the extent of above- and below-ground mass and N loss and N concentrations in the LIDET dowels over the course of a decade as affected by location, ecosystem type, and across locations using time-in-field and climate variables such as annual rates of actual evapotranspiration, precipitation, and mean monthly July and January temperature as predictor variables. The resulting model formulation followed the earlier work on the Forest Litter Decomposition Model FLDM by Zhang et al. (2007, 2008). This particular approach revealed that progressive mass losses and related changes in N content within decaying leaf litter can be modeled across boreal to temperate forest conditions for a wide range of leaf litters. This was done by using first- to second-order rate equations for leaf litter decay and N mineralization, and invoking a gradual transitioning from an initially fast and perhaps N limited decay process to slow and eventually C limited mass and N losses from the increasingly humified residue. A similar transitioning can be expected to occur in decaying wood.

2. Methods

2.1. LIDET procedures

Wooden dowels (61 cm long, 13 mm in diameter) of a tropical hardwood species *Gonystylus bancanus* [Miq.] Kurz, generally referred to as "ramin", were placed at 27 locations across North and Central America over the course of several years from 1990 to 1995 (LIDET, 1995). These locations represent a cross-section of biomes, varying from boreal, temperate and tropical forests to grasslands, wetlands and tundra (Table 1). Dowel emplacement occurred in two separate years in 24 locations, and only in one year at three locations. At each location, 48 dowels were placed on level ground

Table 1

LIDET locations, with specifications for mean annua	precipitation, actual evapotransp	piration (AET), and January and J	ily temperatures, arranged by ecosystem type.

	Location	State/country	Ecosystem	17°5T Lat.	65°52' Long.	Elev. (m)	Ppt (cm)	AET (cm)	T_{Jan} (°C)	T_{Julv} (°C)
BNZ	Bonanza Creek Experimental Forest	Alalaska	Boreal Forest	64°45′	148°00′	300	40.3	36.0	-24.9	16.4
13/34/	Loch Vale Watershed	Colorado	Boreal Forest	/ ∩ ∘1T	105°30/	3160	109.6	85.1	03	14.6
	Luponu	Alaska	Tomporate Conifer Forest	40 11 58°00/	124.00/	100	105.0	40.5	-5.5	12.0
JUN	Julicau Plodgott State Recearch	California	Temperate Conifer Forest	30 UU 20052	134 00	1200	124.4	45.5	-3.0	12.5
BSF	Forest	California	remperate conner Forest	38-52	120-39	1300	124.4	/5.3	9.4	23.4
AND	H. J. Andrews Experimental Forest	Oregon	Temperate Conifer Forest	44°14′	122°11′	500	230.9	76.4	0.3	18.3
OLY	Olympic National Park	Washington	Temperate Conifer Forest	47°50′	122°53′	150	153.1	79.4	5.1	16.2
UFL	University of Florida	Florida	Temperate Conifer Forest	29°45′	82°30′	35	123.8	116.6	15.3	26.8
NLK	North Temp. Lakes (Trout Lake Station)	Wisconsin	Temperate Deciduous Forest	$46^{\circ}00^{\prime}$	89°40′	500	67.7	64.9	-12.5	19.1
HBR	Hubbard Brook	New Hampshire	Temperate Deciduous	43°56′	71°45′	300	139.6	71.2	-8.7	18.8
CDR	Cedar Creek Natural	Minnesota	Temperate Woodland	45°24′	93°12′	230	82.3	73.3	-13.5	21 2
	History Area		Humid Grassland							
HFR	Harvard Forest	Massachusetts	Temperate Deciduous Forest	42°40′	72°15′	335	115.2	85.1	-6.9	20
CWT	Coweeta Hydrol. Laboratory	North Carolina	Temperate Deciduous Forest	35°0′	85°30′	700	190.6	117.3	3	21.5
GSF	Guanica State Forest	Puerto Rico	Dry Tropical Forest	17°57′	65°52′	80	50.8	50.2	24.9	27.7
MTV	Monte Verde	Costa Rica	Tropical Elfin Cloud Forest	10°18′	84°48′	1550	268 5	108.4	183	16.8
LUQ	Luquillo Experimental	Puerto Rico	Humid Tropical Forest	18°19′	65°49′	350	336.3	123.4	20.8	24.8
BCI	Barro Colorado Island	Panama	Humid Tropical Seasonal Forest	9°10′	79°51′	30	269.2	136.8	25.2	25.6
IBS	La Selva Biological Station	Costa Rica	Humid Tropical Forest	10°00′	83°00/	35	409 9	169.9	24.9	25.9
SMR	Santa Margarita Ecological	California	Annual Grassland	33°30′	117°45′	500	24.0	23.6	12	20.5
biint	Reserve	cumornia	innuar orabbiand	33 30	117 10	500	2 110	2010	12	20
SEV	Sevilleta	New Mexico	Warm Semi-desert	34°29′	106°40′	1572	25.4	25.2	2.9	25
JRN	Jornada Experimental Range	New Mexico	Warm Semi-desert	32°30′	106°45′	1410	29.8	29.2	3.8	26
CPR	Central Plains Eperimental Range	Colorado	Temperate Shortgrass	40°49′	104°46′	1650	44.0	43.0	-3.1	21.6
KN7	Konza Praerie Research	Kansas	Temperate Tallgrass	30005/	93035/	366	79 1	747	_27	26.6
KBS	Kellogg Biological Station	Michigan	Agro Ecosystem	12°24/	85024/	288	911	70.6	5.1	20.0
ND5 VCD	Virginia Coast Reserve	Virginia	Wetland	42 24 27:20/	75° 40′	200	1120	70.0	-3.1	22.3
VUR	North Inlat (Hoheavy	viigiiiid	Wetland	32°20/	70°12/	0	113.0	99.3 120.6	J.I 0 /	20
INIIN	Barony)	South Carolina	wettand	33'30	79-13	Z	149.1	120.6	8.4	26.9
ARC	Arctic Site, Toolik Lake	Alaska	Tundra	68°38′	122°11′	760	32.7	28.4	-20.3	10.8
NWT	Niwot Ridge & Green Lakes Valley	Colorado	Tundra	40°03′	105°37′	3650	124.9	64.7	-13.2	8.2

Download English Version:

https://daneshyari.com/en/article/4376872

Download Persian Version:

https://daneshyari.com/article/4376872

Daneshyari.com