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a b s t r a c t

The population dynamics of species interactions provides valuable information for life sciences.
Lotka–Volterra equations (LVEs) are known to be the most popular model, and they are mainly applied
to the systems of predation and competition. However, LVEs often fail to catch the population dynam-
ics of mutualism; the population sizes of species increase infinitely under certain condition (divergence
problem). Furthermore, LVEs never predicts the Allee effect in the systems of obligate mutualism. Instead
of LVEs, several models have been presented for mutualism; unfortunately, they are rather complicated.
It is, therefore, necessary to introduce a simpler theory for mutualism. In the present paper, we apply
the lattice gas model which corresponds to the mean-field theory of the usual lattice model. The derived
equations are cubic and contain only essential features for mutualism. In the case of obligate mutualism,
the dynamics exhibits the Allee effect, and it is almost the same as in the male–female systems. In our
model, the population sizes never increase infinitely, because our model contains not only intra- but
also interspecific competitions. If the density of one species increases disproportionately in respect of its
mutual partners, then this might imply downward pressure on the population abundance of the mutual
partner species and such feedback would eventually act as a controlling influence on the population
abundance of either species. We discuss several assumptions in our model; in particular, if both species
can occupy in each cell simultaneously, then the interspecific competition disappears.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

All species on the earth are closely related to other species. In a
simple view, the interaction between a pair of species can be classi-
fied into three typical categories: predation (one gains and the other
suffers: “+, −”), competition (−, −) and mutualism (+, +) (Begon
et al., 2006). In recent years, the concern for mutualism is grow-
ing, since most of the World’s biomass is dependent on mutualism
(e.g., Pellmyr and Huth, 2002; Bashary and Bronstein, 2004; Begon
et al., 2006). For example, microbial species influence on the abun-
dances and ecological functions of related species (Madigan et al.,
2000; Keller and Surette, 2006; Goto et al., 2010). Many bacterial
species coexist in a syntrophic association (obligate mutualism);
that is, one species lives off the products of another species. So far,
mathematical models for mutualisms have often been neglected in
many ecological textbooks.

The most famous model of population dynamics is a series of
Lotka–Volterra equations (LVEs) (e.g., Lotka, 1925; Volterra, 1926;
Takeuchi, 1996; Hofbauer and Sigmund, 1998). In many textbooks,
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LVEs are referred as basic models for both predation and compe-
tition. When LVEs were applied to mutualism, they were given
by

dx

dt
= rXx(KX − x + ˛Yy)

KX
(1a)

dy

dt
= rYy(KY − y + ˛Xx)

KY
(1b)

where x and y indicate the population sizes (densities) of sym-
biotic species X and Y, respectively, and rj Kj, ˛j are parameters
(j = X,Y). It is known that the positive stable equilibrium exists,
only when ˛X˛Y < 1 (Takeuchi, 1996). However, if ˛X˛Y > 1, the
population sizes of both x and y increase infinitely (“divergence
problem”). Moreover, LVEs never predict Allee effects for obli-
gate mutualism. These problems can be avoided by several models
(Wright, 1989; Doebeli, 2002; Tainaka et al., 2003; Hammerstein,
2003; Amarasekare, 2004; Courchamp et al., 2008; Holland and
DeAngelis, 2010). However, these models are rather complicated;
they use fractional equations or nonlinear equations of higher
order; not only the analytic solutions are difficult to obtain, but
also the resultant solutions are difficult to interpret. In order to
understand the basic features of mutualism, it is necessary to build
a simpler mathematic model.
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The Allee effect has been first introduced for a single-species by
W.C. Allee (Allee, 1930). His main interest was the influence of den-
sity on population dynamics, especially in aquatic organisms. When
the population size of a species becomes below a critical number,
the risk of extinction increases drastically. Such a threshold effect is
termed Allee effect (Odum, 1953; Courchamp et al., 2008). Since his
pioneering work, many ecologists studied the Allee effect (Lamont
et al., 1993; Groom, 1998; Davis et al., 2002; Angulo et al., 2007;
Tanaka et al., 2009; Nariai et al., 2011). The most typical population
model for an Allee effect has been represented by

dx

dt
= Rx(x − a)(b − x) (2)

where x indicates the population size of a species, and the
parameres R, a and b are positive (a < b) (Lewis and Kareiva, 1993;
Courchamp et al., 2008). Eq. (2) has three equilibriums; both x = 0
and x = b are stable, while x = a is unstable. The species survives
(goes extinct) for x > a (x ≤ ˛). Hence, the parameter a means a mini-
mum size of viable population and b the stable equilibrium density.
Note R is a parameter related to the initial growth rate (discussed
later). Our theory for obligate mutualism can derive Eq. (2) for both
species.

In the present paper, we apply “lattice gas model” or “lattice gas
automaton” which is a kind of individual-based models on a lattice
(Frisch et al., 1986; Dieter, 2000; Hagiwara et al., 2011). The lattice
gas model (lattice gas automaton) differs from the usual “lattice
model”. The difference between lattice and lattice gas models lies
in the range of interaction: in lattice model, the interaction occurs
between adjacent lattice sites (“local interaction”), whereas in lat-
tice gas model it occurs between any pair of lattice sites (“global
interaction”). In most cases, the dynamics of lattice models cannot
be expressed by mathematical equations. In contrast, that of lattice
gas model is usually represented by differential equations that are
called the mean-field theory of lattice model. Such equations are
served for multiple uses. In order to build a simple mathematical
model of mutualism, we here apply the lattice gas model.

In the next section, we review the correspondence relation
between lattice and lattice gas models. In ecology, the lattice gas
model (mean-field theory of lattice model) usually corresponds to
LVEs (Tainaka, 1988, 1989; Matsuda et al., 1992). We apply such a
correspondence to mutualism. In Section 3, we build a simple lattice
gas model for mutualism. In Sections 4 and 5, we derive the mean-
field theories which are represented by cubic equations. Section 5
is devoted to report the results for obligate mutualism. In Section
5, we deal with general cases of mutualism. The phase diagram and
typical types of population dynamics are elucidated.

2. Theoretical rationale

In recent years, lattice models are widely applied in the field
of ecology. On a lattice, simulations are performed under either
local or global interactions. In the former case, an interaction occurs
between adjacent lattice sites. The latter case is called lattice gas
model, where an interaction occurs between any pair of lattice sites.

For simplicity, we first consider a single-species system. It is
well known that the most canonical model is the logistic equa-
tion (Verhulst, 1838). A lattice version of logistic equation is called
“contact process” (Harris, 1974; Liggett, 1985; Konno, 1994) which
is defined as follows:

X + O → 2X, (reproduction rate r) (3a)

X → O, (mortality rate m) (3b)

where X denotes an individual of a species (or the site occupied
by a species), and O is the empty site. The first (second) reaction
means the birth (death) processes of X. In the lattice model, the

first reaction occurs between adjacent lattice sites. In the lattice
gas model, it occurs between any pair of sites, and its dynamics can
be represented by the following rate equation:

dx

dt
= rx(1 − x) − mx (4)

where x and (1 − x) are the densities of species and empty sites,
respectively. The first and second terms in the right hand side
come from the birth and death processes. Eq. (4) can be rewrit-
ten by the logistic equation dx/dt = Rx(1 − x/K), where R = r − m and
K = r/(r − m).

For two-species system, the lattice version of Lotka–Volterra
models have been studied by several authors (Satulovsky and
Tome, 1994; Nakagiri et al., 2001). A typical lattice version of
prey-predator system has been introduced as follows (Tainaka and
Fukazawa, 1992):

X + Y → 2Y, X + O → 2X, Y → O

where X and Y denote prey and predator, respectively. The above
reactions represent the predation of Y, reproduction of X, and
death of Y, in order. The mean-field theory corresponds to LVEs in
prey-predator system with density effect. Similarly, lattice versions
of competition system have been presented by several authors
(Matsuda et al., 1992; Neuhauser, 1992; Tainaka et al., 2004; Kawai
et al., 2008). Their mean-field theories correspond to the LVEs of
competition. Hence, it is expected that a canonical theory for mutu-
alism can be derived from a canonical lattice gas model.

3. Model

Let us consider a system consisting of two species X and Y. Each
lattice site is labeled by X, Y or O, where O means the empty site.
The reactions are defined by

X + O → 2 X, (rate Bx) (5a)

Y + O → 2 Y, (rate BY) (5b)

X → O (rate mx) (5c)

Y → O (rate mY) (5d)

where the reactions (5a) and (5c) respectively denote the birth and
death processes of species X, and BX (mx) denotes the birth (mortal-
ity) rate of species X. Similarly, the reactions (5b) and (5d) have the
same meanings for species Y. The birth rates should be indicated as
follows:

BX = rX + εXy (6a)

BY = rY + εYx (6b)

where x (y) is the density of species X (Y). The parameters rx and
ry are the reproduction rates without the other species, and εX and
εY denote mutualistic effects on the reproduction rates. Hence, the
birth rate of one species increases with the density of the other
species. If species Y is absent, then the reaction (5) is equivalent
to the contact process [the reaction (3)]. In the limiting case (εX,
εY) → (0,0), the system (5) becomes a competition model called
“multiple contact process” (Neuhauser, 1992). In this case, two
species cannot coexist; because of reaction (5a), both species com-
pete with each other to get empty sites (exploitative competition).

We explain the simulation procedure of lattice gas model for
mutualism. Reaction processes are performed in the following two
steps:

i) Two lattice sites are chosen randomly and independently. The
pair sites obey the reaction (5a). For example, if chosen sites are
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