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a b s t r a c t

Emissions and uptake of soil greenhouse gases (GHG) are controlled by soil biogeochemical processes. We
developed simple models, which were termed SG models, for soil CO2 efflux, CH4 uptake, and N2O efflux
in forest soils. We described each gas flux in terms of three functions: soil physiochemical properties
(C/N ratio for CO2 and N2O, bulk density for CH4; 0–5-cm soil layer), water-filled pore space (WFPS, 5-cm
depth) and soil temperature (5-cm depth). Multi-site data, which were gathered monthly in Japanese
forests over 3 years, were used for model calibration (36 sites, n = 768 in total for each gas flux). We used
Bayesian calibration for optimization of the models. The functions for soil physiochemical properties
were as follows. As soil C/N ratio increases, CO2 flux increases, but N2O flux rapidly decreases. CH4

uptake decreases with increasing bulk density. Calibration clearly revealed the different sensitivities of
each gas flux to WFPS and soil temperature. The estimated optimum WFPS for CO2 flux was around 0.5
(intermediate), whereas CH4 flux decreased with increasing WFPS, and N2O flux increased with increasing
WFPS. The Q10 values for CO2, CH4, and N2O fluxes were 1.9, 1.1, and 3.4, respectively. Our models
reproduced observed GHG fluxes well, both in comparison to each observation and the site average.
The SG models require only three inputs, which are easily measurable and are therefore suitable for
regional application and incorporation into other models as GHG submodels.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

CO2, CH4, and N2O are major greenhouse gases (GHG) (IPCC,
2007), and forest soils play an important role in the emissions of CO2
and N2O and the uptake of CH4 (except for anaerobic soils). These
gas fluxes are controlled by soil physiochemical properties, tem-
perature, and soil water conditions (Ishizuka et al., 2002; Davidson
et al., 2004; Butterbach-Bahl et al., 2004; Morishita et al., 2004).

Modeling is a useful tool for tracing detailed processes, estimat-
ing regional GHG fluxes, and also predicting changes in the fluxes
that will be caused by climate change (Potter et al., 1996; Del Grosso
et al., 2005). A number of process-oriented models have been pro-
posed for the evaluation of GHG emissions/uptake (e.g., Li et al.,
2000). Because these models include complex processes involving
carbon, nitrogen, and water, they require many inputs (e.g., daily
climate data, like maximum and minimum temperature, precip-
itation, and solar radiation, and detailed soil physiochemical and
vegetation properties) and include dozens or hundreds of parame-
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ters. These models are developed for tracing detailed processes and
are suitable for application at sites that have enough input data
and for use in investigating detailed processes. Whereas simpler
models cannot trace such detailed processes, they are essential for
regional applications or incorporation into other models. Simpler
models require fewer inputs and are easier to handle (e.g., a soil
carbon model by Liski et al., 2005). Furthermore, they also have the
advantage that the link between input variables and output is clear
and easy to evaluate.

One of the keys when building models is determination of the
data used for parameterization; the reliability of a model is higher
when the model is parameterized using a wider range of data (e.g.,
many sites, many kinds of vegetation and/or soil types, and inter-
annual variations). Particularly when we apply the model to the
regional scale, the parameterization should be conducted using a
wider range of data for more accurate and precise estimates.

In this study, we constructed simple models for soil CO2 efflux,
CH4 uptake, and N2O efflux that are suitable for use in regional
evaluation and for incorporation into other models. Each model
calculates gas flux as a function of soil physiochemical proper-
ties, water-filled pore space (WFPS), and soil temperature. The
input variables required are C/N ratio (0–5-cm soil layer) for the
CO2 and N2O models, bulk density (0–5-cm depth) for the CH4
model, WFPS (5-cm depth), and soil temperature (5-cm depth).
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For parameterization, we used multi-site data observed monthly
in Japanese forests over 3 years (36 sites, n = 768 for each gas
flux). We applied a Bayesian calibration scheme (Van Oijen et al.,
2005), which is an optimization scheme that uses Monte Carlo
sampling (Van Oijen et al., 2005; Müller et al., 2007), and is the
best available scheme for estimating best-fit parameters based on
observation data. In particular, the method has often been used for
seeking universal parameters against multi-site datasets (Lehuger
et al., 2009; Tuomi et al., 2009). The method also provides for the
uncertainty of estimated parameters. The use of this method has
been steadily increasing (Bates and Campbell, 2001; Xu et al., 2006;
Tuomi et al., 2009; Lehuger et al., 2009; Yeluripati et al., 2009).

The purposes of this study were (1) to construct simple mod-
els for CO2, CH4, and N2O fluxes; (2) to calibrate the models with
multi-site field observation data from Japanese forest soils using
the Bayesian calibration scheme; and (3) to evaluate the differences
in the responses of each gas flux to soil water and temperature
through parameterization.

2. Materials and methods

2.1. Model structure

We developed Simple greenhouse Gas models, which we termed
SG models. In these models, each gas flux (CO2, �g C m−2 s−1; CH4,
�g C m−2 h−1; and N2O, �g N m−2 h−1) is described by the same
three factors: soil physiochemical properties, soil water, and soil
temperature:

Gas flux = f (SP)g(WFPS)h(T) (1)

where f(SP) is the function for soil physiochemical properties (SP,
0–5-cm soil layer), g(WFPS) is the function for WFPS (5-cm depth),
and h(T) is the function for soil temperature (5-cm depth). We
adopted this simple structure because the goal of this study was
to build simple models. We used one soil physiochemical property
for each gas flux, and the variable was chosen after plotting various
variables with the data and examining published papers.

The function for soil physiochemical properties was described
using an exponential function with parameters m and n in common.
The function for CO2 flux was defined to increase with increasing
C/N ratio (CNR, 0–5-cm soil layer):

f (CNR) = menCNR (2)

The function for CH4 flux was defined to decrease with increas-
ing bulk density (BD, Mg m−3, 0–5-cm soil layer):

f (BD) = me−nBD (3)

For N2O flux, the function was defined to decrease with decreas-
ing CNR:

f (CNR) = me−nCNR (4)

As for CO2, the function was determined after plotting flux
data against C concentration (%), content (Mg m−3), and C/N ratio.
Although the correlation was weak, we found that the C/N ratio
was more closely correlated with the CO2 flux than with the other
gas fluxes. We then tested both a linear function (mCNR + n) and an
exponential function (mCNRn) and found that the exponential func-
tion performed slightly better. As for the CH4 and N2O fluxes, the
functions were determined by examining published papers (CH4:
Ishizuka et al., 2009; N2O: Nishina et al., 2009a,b).

The function for WFPS (5 cm) was defined by the following equa-
tion and used for every gas model:

g(WFPS) =
(

WFPS − a

b − a

)d(WFPS − c

b − c

)−d((b−c)/(b−a))
(5)

where a, b, c, and d are the parameters. The function has a con-
vex shape, and values range from 0 to 1. The parameters a and c
are the minimum and maximum values of WFPS, respectively (i.e.,
g(a) = g(c) = 0). The parameter b, which ranges between a and c, is
the optimum parameter (i.e., g(b) = 1). The parameter d controls the
curvature of the function, but the three other parameters also affect
the shape. This function was adopted from the DAYCENT model
(Parton et al., 1996; Del Grosso et al., 2000). Because the data we
used in this study did not include WFPS, WFPS was calculated as
a function of measured bulk density (BD, Mg m−3, 5 cm) and vol-
umetric soil water content (�, 5 cm) using the following equation
(Parton et al., 2001):

WFPS = �(
1 − (BD/2.65)

) (6)

The exponential function was used for the soil temperature for
every gas flux. The equation is as follows:

h(T) = epT (7)

where p is the parameter, and T is soil temperature (◦C, 5 cm). h(T)
is 1 when the soil temperature is 0 ◦C.

The seven parameters of the model, two for the function of soil
physiochemical properties (m, n), four for the function of WFPS
(a, b, c, d), and one for the function of soil temperature (p), were
determined using Bayesian calibration (see below).

2.2. Bayesian calibration

2.2.1. Bayes’ theorem
Bayesian calibration is a model calibration method (Van Oijen

et al., 2005; Müller et al., 2007) based on Bayes’ theorem. Bayes’
theorem is described in the following equation:

pr(�|x) = pr(�)pr(x|�)
pr(x)

(8)

where x is the observation, � is the parameter, pr(�|x) is the condi-
tional probability of � on x or the posterior distribution of �, pr(�)
is the prior probability of �, pr(x|�) is the conditional probability of
observations x on �, and pr(x) is the probability of observation x.
The equation can be written in the following form:

pr(�|x) ∝ pr(�)pr(x|�) (9)

In general, a Gaussian function is assumed for the error function,
pr(x|�) (Van Oijen et al., 2005; Xu et al., 2006; Müller et al., 2007),
and the posterior function can be written as follows:

pr(�|x) ∝ pr(�)
n∏

i=1

1√
2��

e−(xo−xm)2/(2�2) (10)

where xo and xm are the measured and modeled values, respec-
tively, n is the number of data points, and � is the standard
deviation. We assumed a uniform distribution, U(�min, �max), for
each parameter:

pr(�1) = 0 for �1 < �min or �1 > �max (11)

pr(�1) = 1
�max − �min

for �min ≤ �1 ≤ �max (12)

where �1 is a parameter, and �min and �max are the lower and upper
boundaries of the uniform distribution. In practice, calculations
were performed in logarithms because it was computationally eas-
ier. The observed standard deviation for each gas flux was used for
� in this study.
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