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a b s t r a c t

For anisotropic density functions of e.g. fruit or leaf dispersal, most mathematical research is only done in
polar coordinates. However, in software solutions aiming to derive inverse models for real world dispersal
data, Cartesian coordinates may be preferred for several reasons. Thus, we introduce an anisotropic model
in Cartesian coordinates following the approach in Wälder et al. (2009) with the von Mises approach.
By introducing a correction factor, we thereby consider the fundamental attribute, that the integral over
a density function with respect to the Cartesian coordinates has to be equal 1. It may have been over-
looked so far that guaranteeing for this attribute needs different approaches whether working in polar
or Cartesian coordinates. One result is that our approach can be used also for other anisotropic models
rather than models from the von Mises approach.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Individually based models have reached widespread acceptance
so far (e.g. in simulations). However, to improve accuracy of predic-
tions, the underlying individual effect models need to have highest
ecological consistency available. An important step to improve so
called inverse models (Clark et al., 1999) was done by widening
applicability through incorporating anisotropic algorithms instead
of solely using isotropic ones (Wagner et al., 2004).

When inverse models are applied to real-world data (e.g. in
seed or leaf dispersal), the scientist often wants to deduce the
total amount of subjects an individual produces. To do so, some
prerequisites have to be met by the kernel formula. One of those
prerequisites is that the integral over the density function with
respect to the Cartesian coordinates has to equal 1.

Although this aspect seems clear, the proof whether the models
fit this demand is hardly ever given by the authors.

2. Theory

Based on the anisotropic model for fruit dispersal in polar coor-
dinates of Wälder et al. (2009), we want to deduce an anisotropic
model in Cartesian coordinates. To get a better understanding of our
approach, we give a brief description of the work done in Wälder
et al. (2009).
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They started with the established density function in Cartesian
coordinates

pi(x, y):=
exp

(
−

((
ln(

√
x2 + y2) − �2

)
/2�2

))

(2�)3/2�(x2 + y2)
(1)

for the lognormal model. This function is equivalent by coordinate
transformation to

pi(r):=
exp

(
−

(
(ln(r) − �)2/2�2

))
(2�)3/2�r2

(2)

which is the density function in polar coordinates mentioned in
Stoyan and Wagner (2001: 38). Then they stated the important
attribute of the density function. The integral over the density func-
tion with respect to the Cartesian coordinates has to be equal 1,

∫ ∞

−∞

∫ ∞

−∞
pi(x, y) dy dx =

∫ 2�

0

∫ ∞

0

pi(r) · r dr dϕ = 1. (3)

The equality in (3) holds because of the Jacobian of x = r · cos ϕ
and y = r · sin ϕ

det J = det
∂(x, y)
∂(r, ϕ)

=
∣∣∣∣ cos ϕ −r sin ϕ

sin ϕ r cos ϕ

∣∣∣∣ = r. (4)

After introducing the modified distance r(ϕ) = r · f(ϕ) with the
von Mises approach

f (ϕ) = exp (k cos(ϕ − u + �)) , (5)
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Fig. 1. Procedure of the approach from Wälder et al. (2009); ⇔ equivalence, ⇓
mathematical relation, → modification.

they replaced r by the modified distance r(ϕ) in the integral of Eq.
(3) and got∫ 2�

0

∫ ∞

0

pa(r(ϕ)) · r(ϕ) dr dϕ /= 1 (6)

with

pa(r(ϕ)):=
exp

(
−

(
(ln(r(ϕ)) − �)2)/2�2

)
(2�)3/2�(r(ϕ))2

. (7)

To correct this problem they established the correction factor

F̂ = 2�/(
∫ 2�

0
1/f (ϕ) dϕ) and got

∫ 2�

0

∫ ∞

0

F̂ · pa(r(ϕ)) · r(ϕ) dr dϕ = 1. (8)

The summary of this approach can be seen in Fig. 1.
Our approach is slightly different. We start from the density

function pi(x, y) in (1) with the Cartesian coordinates (x, y) by
assuming that the tree position is (0, 0). To describe the anisotropic
density function with the von Mises approach in (5) in Cartesian
coordinates, we use the well known transformations

ϕ = ϕ(x, y):=

⎧⎪⎨
⎪⎩

arctan
(

y/x
)

, x > 0;
arctan

(
y/x

)
+ �, x < 0;

�/2, x = 0, y > 0;
3�/2, x = 0, y ≤ 0;

and r =
√

x2 + y2. Thus, in function (1) we replace the distance√
x2 + y2 by the modified distance d(x, y):=

√
x2 + y2 · f (ϕ(x, y)),

which is equivalent to r(ϕ), and get

pa(x, y):=
exp

(
−

((
(ln(d(x, y)) − �)2)/2�2

))
(2�)3/2�(d(x, y))2

. (9)

This anisotropic density function is equivalent to (7). The modifi-
cation from the isotropic density function to the anisotropic density
function can be seen by comparing Figs. 2 and 3. In both figures, the

Fig. 2. Contourplots of the distance r in meter (left picture) and the seed distribution
M · pi(r) in numbers per square meter (right picture) with M = 100,000, � = 2.6 and
� = 0.8.

Fig. 3. Contourplots of the modified distance r(ϕ) in meter (left picture) and the
seed distribution F · M · pa(r(ϕ)) in numbers per square meter (right picture) with
M = 100,000, � = 2.6, � = 0.8, k = 0.5 and u = 0.9.

distance function r and r(ϕ) respectively is shown on the left side
and the associated density distribution of the seeds, i.e. the density
function multiplied by the total seed amount M = 100,000 of one
tree M · pi(r) and M · pa(r(ϕ)), is shown on the right side.

Checking the integral attribute for our density function (9) we
got∫ ∞

−∞

∫ ∞

−∞
pa(x, y) dy dx /= 1. (10)

Thus we introduce the correction factor

F = 1∫ ∞
−∞

∫ ∞
−∞ pa(x, y) dy dx

. (11)

By considering det J we transform Eq. (11) in polar coordinates
to get a closer form

F = 1∫ 2�

0

∫ ∞
0

pa(r(ϕ)) · r dr dϕ
.

This can be reduced to F = 2�/(
∫ 2�

0
1/(f (ϕ))2 dϕ). Now the fol-

lowing holds∫ ∞

−∞

∫ ∞

−∞
F · pa(x, y) dy dx =

∫ 2�

0

∫ ∞

0

F · pa(r(ϕ)) · r dr dϕ = 1.

(12)

We summarize the procedure of our approach in Fig. 4.

3. Results and conclusion

From our point of view we want to stress two important things.
The first one is a comparison with the results in Wälder et al. (2009)
while the other one alludes to our correction factor F.

First we want to stress out what influence the different cor-
rection factors F̂ and F have. We consider the example of Fig. 3.
Selecting the correction factor of Wälder et al. (2009) the amount

Fig. 4. Procedure of our approach; ⇔ equivalence, ⇓ mathematical relation, → mod-
ification.
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