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a b s t r a c t

Bashari et al. (2009) propose combining state and transition models (STMs) with Bayesian networks for
decision support tools where the focus is on modelling the system dynamics. There is already an extension
of Bayesian networks – so-called dynamic Bayesian networks (DBNs) – for explicitly modelling systems
that change over time, that has also been applied in ecological modelling. In this paper we propose
a combination of STMs and DBNs that overcome some of the limitations of Bashari et al.’s approach
including providing an explicit representation of the next state, while retaining its advantages, such an
the explicit representation of transitions. We then show that the new model can be applied iteratively
to predict into the future consistently with different time frames. We use Bashari et al.’s rangeland
management problem as an illustrative case study. We present a comparative complexity analysis of
the different approaches, based on the structure inherent in the problem being modelled. This analysis
showed that any models that explicitly represent all the transitions only remain tractable when there are
natural constraints in the domain. Thus we recommend modellers should analyse these aspects of their
problem before deciding whether to use the framework.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Environmental management involves making decisions that
will impact on the ecological system. Examples include whether
to control exotic flora or fauna, restrict farming or forestry prac-
tices, or change the landscape to alter water flow or usage. Any
useful environmental decision support tool must model changes
in the ecological system over time, particularly those that are the
result of human activities.

The so-called state-and-transition model (STM) has been used to
model such changes over time in systems that have clear transitions
between distinct states of a physical environment, in particular
rangeland vegetation (Stringham et al., 2003; Bestelmeyer et al.,
2003; Sadler et al., 2010), but also other ecological and environ-
mental domains (e.g., Saatkamp et al., 1996). The STM framework
facilitates the organisation of information for management pur-
poses. STMs are mainly based on the state/transition/threshold
relationships determined by the resilience and resistance of the
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ecosystems’ primary ecological processes. They combine the graph-
ical depiction of transitions and their causal factors with tables of
qualitative descriptions of the transitions.

Bayesian networks (BNs) are an increasingly popular paradigm
for reasoning under uncertainty. A Bayesian network (Pearl, 1988;
Jensen and Nielsen, 2007) is a directed, acyclic graph whose nodes
represent the random variables in the problem. A set of directed
edges connect pairs of vertices, representing the direct dependen-
cies (which are often causal connections) between variables. The
set of nodes pointing to X are called its parents, and is denoted
pa(X). The relationship between variables is quantified by condi-
tional probability tables (CPTs) associated with each node, namely
P(X|pa(X)). The CPTs together compactly represent the full joint dis-
tribution. Users can set the values of any combination of nodes in
the network that they have observed. This evidence, e, propagates
through the network, producing a new posterior probability distri-
bution P(X|e) for each variable in the network. There are a number of
efficient exact and approximate inference algorithms for perform-
ing this probabilistic updating, providing a powerful combination
of predictive, diagnostic and explanatory reasoning.

Fig. 1 gives an example BN for a simple artificial ecological prob-
lem, to illustrate the components (structure and the CPTs) together
with several reasoning scenarios, using screenshots from the Netica
BN software (Norsys, 1994–2010).

The complexity of a BN model is naturally the number of
parameters, typically the size of the CPTs. However, often there is
so-called “local structure” in the relationship between parent and
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Fig. 1. BN example—“Native Fish” (Nicholson and Woodberry, 2010).

child nodes, so the full CPT does not need to be specified, instead
more compact “context sensitive” representations can be used (e.g.,
Boutilier et al., 1996). In addition, the most efficient inference algo-
rithms do not work directly on the BN graph, but instead compile it
into a so-called junction tree. The complexity of the inference then
depends on the structure and size of this compiled form.

Over the past 10 years, BNs have been widely used in ecological
modelling (see Section 5.2.3 in Korb and Nicholson, 2010 for a sur-
vey), with a number of modelling guidelines published (e.g., Varis
and Kuikka, 1999; Borsuk et al., 2004; Renken and Mumby, 2009),
while Uusitalo (2007) reviews their features and use in modelling
environmental applications.

Bashari et al. (2009) suggested combining STMs and BNs to
obtain the advantages of both, namely the STM’s graphical depic-
tion of transitions with the BN’s quantitative representation of
the uncertainty using probabilities. They describe an approach to
rangeland management decision support that combines a state

and transition model with a Bayesian network to provide a rel-
atively simple and updatable rangeland dynamics model that
can accommodate uncertainty and be used for scenario, diag-
nostic, and sensitivity analysis. In this paper we begin with a
detailed analysis of Bashari et al.’s framework, then formalise
and modify it to overcome most of the limitations identified
(Section 2).

The crucial weakness in their framework, however, is that it
does not explicitly model the “next” state of the system, a key
component in any dynamic modelling framework. We then show
how an existing variant of Bayesian networks – so-called dynamic
Bayesian networks (DBNs) – can be used to overcome this problem
(Section 3). DBNs are a long-established extension to ordinary BNs
that allow explicit modelling of changes over time (e.g., Dean and
Kanazawa, 1989; Kjærulff, 1992; Nicholson, 1992). They have been
used in a range of applications such as robot monitoring (Forbes
et al., 1995; Dean and Wellman, 1991; Nicholson and Brady, 1992),
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