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a b s t r a c t

Dispersal kernels in grid-based population models specify the proportion, distance and direction of move-
ments within the model landscape. Spatial errors in dispersal kernels can have large compounding effects
on model accuracy. Circular Gaussian and Laplacian dispersal kernels at a range of spatial resolutions were
investigated, and methods for minimizing errors caused by the discretizing process were explored. Ker-
nels of progressively smaller sizes relative to the landscape grid size were calculated using cell-integration
and cell-center methods. These kernels were convolved repeatedly, and the final distribution was com-
pared with a reference analytical solution. For large Gaussian kernels (� > 10 cells), the total kernel error
was <10−11 compared to analytical results. Using an invasion model that tracked the time a population
took to reach a defined goal, the discrete model results were comparable to the analytical reference.
With Gaussian kernels that had � ≤ 0.12 using the cell integration method, or � ≤ 0.22 using the cell cen-
ter method, the kernel error was greater than 10%, which resulted in invasion times that were orders
of magnitude different than theoretical results. A goal-seeking routine was developed to adjust the ker-
nels to minimize overall error. With this, corrections for small kernels were found that decreased overall
kernel error to <10−11 and invasion time error to <5%.

Published by Elsevier B.V.

1. Introduction

Spatially explicit population models are useful for forecasting
spatial processes that cannot be solved with single-location ana-
lytical models. They combine temporal reproduction and mortality
processes with spatial redistribution processes. The earliest spa-
tial population models were analyzed with continuous time and
space equations (e.g. Kolmogorov et al., 1937), and this form is still
important and useful (e.g. Andow et al., 1990; Lutscher et al., 2007).
Continuous systems allow for exact solutions to research questions
such as density of organisms and speed of invasion wavefronts at a
given time and place. They simulate populations that have free, or
non-seasonal, reproduction throughout the time domain.

For modeling organisms that have a distinct breeding season,
integro-difference models that are discrete in time, but contin-
uous in space, are often used (e.g. Neubert and Caswell, 2000;
Lutscher and Lewis, 2004). Because of increased complexity in
the model system compared to all-continuous models, numeric
fast-Fourier transformations or numerical solutions are commonly
found in ecological applications of integro-difference dispersal
models, rather than analytical solutions (e.g. Kot et al., 1996).
Because of computational complexity, theoretical spatial processes
are often developed first in continuous space, and then demon-
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strated with a grid-based discrete map lattice (e.g. Lutscher and
Lewis, 2004).

1.1. Discrete-space models

If a continuous-space model is analytically intractable or if a
fragmented, realistic map landscape is desired, the landscape of
interest can be modeled directly in discrete space. Methods of dis-
cretizing space include nodal models that simulate the measured
distances and directions among habitat nodes (spatially explicit
population model; Dunning et al., 1995), or simulate the “move-
ment cost” associated with movement between two nodes (Minor
and Urban, 2007). These “graph models” are by definition uncon-
cerned with the space between nodes of interest. Space can also be
subdivided into grids that simulate all of the landscape of interest.
Irregular grids, such as unstructured polygonal meshes or curvilin-
ear grids, allow for different sized cells to concentrate computing
power and resolution in those locations that are more complex. This
approach has been used to model hydrodynamics (e.g. Bockelmann
et al., 2004; Crowder and Diplas, 2000), but apparently not for ani-
mal or plant models due to the complexity of calculating dispersal
in cells that have various sizes and spatial arrangements.

Subdividing the spatial domain into a map lattice of regular
polygons (generally squares) simplifies dispersal modeling. Grid-
based kernel redistribution models are useful for simulating spatial
dispersal processes such as invasion in complex, natural land-
scapes with varying features and multiple types of irregular habitat
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patches. Dispersal routines in grid-based population models spec-
ify the proportion, distance and direction of movement within each
cell of the model landscape. Dispersal methods in regular grid mod-
els include global redistribution (e.g. King and Hastings, 2003), and
nearest-neighbor redistribution (e.g. cellular automata; Ellner et al.,
1998). A flexible modeling paradigm that can be applied to both
graphs and (with effort) grids is circuit theory (McRae et al., 2008).

To simulate local dispersal processes in a grid-based spatial sys-
tem, a continuous dispersal kernel, or probability density function
for redistribution, can be split into component cells to generate
and apply a discrete kernel through spatial convolution (Allen et al.,
2001) or similarly, to apply a displacement matrix (Sebert-Cuvillier
et al., 2008; Westerberg and Wennergren, 2003).

1.2. Problems with discrete spatial models

Standard terminology for cartographic standards, modified for
ecological use, will be used (Dungan et al., 2002). “Spatial extent”
is the overall size of the spatial domain, and “grain size” is the size
of the cells in the landscape grid relative to the spatial extent. As
the grain size decreases, the number of cells within a given spa-
tial extent (the resolution) increases, and the accuracy of spatial
processes, such as dispersal, increases.

Kernel smoothing and accuracy measures for “binned” data, and
the determination of what grain size is needed for a given level
of accuracy has been well documented (Jones, 1989; González-
Manteiga et al., 1996; Hall and Wand, 1996; Pielaat et al., 2006).
With classical numerical simulation of a complicated system that
cannot be solved analytically, the grain of the landscape can be
dynamically adjusted to preserve a defined, low error rate. For the-
oretical applications in discrete systems with a small spatial extent,
a small grain size can be implemented for good accuracy. How-
ever, if the landscape is large compared to the dispersal abilities of
the organism, a fine grain size for detailed dispersal kernels would
lead to a very large number of cells across the spatial domain, thus
requiring large amounts of computer processor power, RAM and
data storage. Depending on the complexity of non-dispersal oper-
ations, the amount of time needed to run grid-based models tends
to increase to the fourth power of the number of cells in any linear
dimension of the simulation, so the time to run a simulation quickly
increases as the spatial resolution becomes finer.

For some applications, the resolution of the model is already set
due to precedent models or available data resolution (e.g. satel-
lite imagery), and the modeler must work within that framework.
For example, there are several spatial population models that sup-
port decision-making in the greater Everglades restoration process
(CERP; http://www.evergladesplan.org/). Many of these models are
driven by hydrological state variables, such as water depth or salin-
ity. Hydrological models that provide these variables are available
for different regions and purposes in 2 × 2 mile squares (SFWMM;
SFWMD, 2005), 500 × 500 m (ATLSS; DeAngelis et al., 1998), or
400 × 400 m (EDEN; Liu et al., 2009). Land managers generally
expect ecological model output to be in the same grid system as
the hydrological models for consistency and ease of interpretation.
These pre-defined grid sizes can lead to very coarse-grained spa-
tial processes and small dispersal kernels. Climate models often are
calculated with grid sizes of several kilometers. Downscaling to a
finer scale presents substantial challenges and effort (Araújo et al.,
2005), so tools to use coarse-scale models directly would be useful.

When dispersal of organisms is introduced to a discrete spa-
tial model, the square shape of the landscape cells introduces
errors in distance and direction as compared to the analyti-
cal dispersal process. Simple discrete dispersal methods such as
nearest-neighbor, where propagules are redistributed only to the
nearest contiguous cells, limit dispersal patterns, and are inap-
propriate for wide-ranging organisms. Using a discrete form of

the continuous integro-difference redistribution kernel may reduce
spatial errors compared to a simple nearest-neighbor distribution
process, but each cell in the kernel can only contain one constant
density, while a continuous dispersal kernel can change value over
the same space. For some applications, a fine temporal scale may
be desired. As the time step decreases, dispersal kernels become
smaller and more coarse-grained. As the grain size is increased
and the number of cells in a dispersal kernel shrinks, the informa-
tion contained within the kernel also shrinks, and the kernel tails
become less well defined. Very coarse kernels can essentially be
reduced to a nearest-neighbor situation. These coarse kernels can
be expected to contain large spatial errors (Hall and Wand, 1996;
Fig. 1).

Errors that are generated by the discretization of spatial pro-
cesses have always been tacitly acknowledged by researchers
performing traditional numerical solutions to continuous spatial
processes, so they use very fine grain sizes or error-controlling
numerical methods (such as Runge-Kutta) in their simulations.
Recently, uncontrolled error that appears in discrete model systems
where the grain size is pre-selected and large is receiving atten-
tion in the literature (Chesson and Lee, 2005; Holland et al., 2007;
O’Sullivan and Perry, 2009). Significant dispersal errors were found
in a model described by Slone et al. (2003), caused by small size
dispersal kernels on a large-grained landscape. For that model, the
authors corrected the specific kernels used on an ad-hoc basis, but
questions remained about the general error rates of small kernels.
Measuring and correcting these errors will be the central focus of
this paper.

2. Methods

2.1. Defining and correcting errors

Accurate dispersal kernels are necessary for spatial models to
be reliable tools for answering management questions. As grain
size decreases towards zero, results from a discrete simulation will
asymptotically approach that of a continuous-space simulation (i.e.
– have zero error). Two questions that arise are (1) at what grain
size does the error between the discrete and continuous system
become negligible for answering research questions, and (2) at
coarser resolutions, can the error be corrected so that more efficient
coarse-grained simulated landscapes can be used?

The research has the following three objectives:

1) quantify error in discrete Gaussian and Laplace dispersal kernels,
and the invasion speed of these kernels when applied to a spatial
model;

2) explore methods to correct kernel error, thus allowing the
output from coarse-grained discrete spatial systems to match
theoretical or field-measured dispersal rates; and

3) determine a minimum grain size where no correction is required
(<5% error in invasion speed).

Though population redistribution functions are often non-
normal (Kot et al., 1996), the bivariate Gaussian distribution was
explored first because it exhibits “closure” (Chesson and Lee, 2005):
that is, as organisms disperse from a single cell through time with
a Gaussian dispersal kernel, their overall distribution will remain
Gaussian, with known parameters. This property enables a sim-
ple but powerful test: as a Gaussian dispersal kernel becomes very
small, do the propagules still disperse in the expected pattern and
retain the expected Gaussian distribution? Other kernel shapes do
not lend themselves so readily to this type of analysis. The Gaussian
kernel – assuming non-directional circular dispersal (�x = �y = 0;
�x = �y = �) – has an additional simplifying property that it has only
one parameter (�; see Table 1 for notation).
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