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a b s t r a c t

There is a vast body of knowledge that eutrophication of lakes may cause algal blooms. Among lakes, shal-
low lakes are peculiar systems in that they typically can be in one of two contrasting (equilibrium) states
that are self-stabilizing: a ‘clear’ state with submerged macrophytes or a ‘turbid’ state dominated by phy-
toplankton. Eutrophication may cause a switch from the clear to the turbid state, if the P loading exceeds a
critical value. The ecological processes governing this switch are covered by the ecosystem model PCLake,
a dynamic model of nutrient cycling and the biota in shallow lakes. Here we present an extensive anal-
ysis of the model, using a three-step procedure. (1) A sensitivity analysis revealed the key parameters
for the model output. (2) These parameters were calibrated on the combined data on total phosphorus,
chlorophyll-a, macrophytes cover and Secchi depth in over 40 lakes. This was done by a Bayesian pro-
cedure, giving a weight to each parameter setting based on its likelihood. (3) These weights were used
for an uncertainty analysis, applied to the switchpoints (critical phosphorus loading levels) calculated by
the model. The model was most sensitive to changes in water depth, P and N loading, retention time and
lake size as external input factors, and to zooplankton growth rate, settling rates and maximum growth
rates of phytoplankton and macrophytes as process parameters. The results for the ‘best run’ showed an
acceptable agreement between model and data and classified nearly all lakes to which the model was
applied correctly as either ‘clear’ (macrophyte-dominated) or ‘turbid’ (phytoplankton-dominated). The
critical loading levels for a standard lake showed about a factor two uncertainty due to the variation
in the posterior parameter distribution. This study calculates in one coherent analysis uncertainties in
critical phosphorus loading, a parameter that is of great importance to water quality managers.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Eutrophication of lakes

Eutrophication of lakes and other surface waters is a world-
wide problem (e.g. Smith et al., 1999). Some 40 years of study
have led to increasing insight in the response of lake ecosystems to
nutrient loading, starting with the pioneering work of Schindler
(1974, 1977) on phosphorus as limiting nutrient for algal crop,
and Sakamoto (1966) and Vollenweider (1968, 1975, 1982) on TP
and chlorophyll models. These steady-state models were the first
to use the mass balance approach to lakes. Several modifications
were made to the Vollenweider model (e.g. Dillon and Rigler, 1974;
Kirchner and Dillon, 1975; Jones and Bachmann, 1976; Larsen and
Mercier, 1976; Reckhow, 1979; Canfield and Bachmann, 1981; and
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others; see e.g. Reckhow and Chapra (1983) and Harper (1992) for
overviews). All these models allowed to derive average nutrient
and chlorophyll concentrations (and sometimes transparency) to P
and N loading and some basic lake features of which mean depth
and retention time proved to be the most important. Loading crite-
ria, together with uncertainty bounds (Reckhow and Chapra, 1983),
were derived for the classification of lakes in different trophic
states (ultra-oligotrophic, oligotrophic, mesotrophic, eutrophic or
hypertrophic). These states could be defined both in terms of TP,
TN and chlorophyll concentrations, in terms of transparency and
also in terms of characteristic species composition. Because of the
limitations of static models, a.o. to predict response times to man-
agement measures and to account for the role of sediments and,
later, also food web effects (e.g. Carpenter et al., 1985), dynamic
models for TP and chlorophyll were developed (see overviews
by Chapra and Reckhow (1983), Jørgensen (1995), Jørgensen et
al. (1995), Jørgensen and Bendoricchio (2001), among others). All
these models were made for more or less deep, phytoplankton-
dominated lakes. Data on shallow lakes (up to several metres)

0304-3800/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.ecolmodel.2009.07.023

http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:jan.janse@pbl.nl
dx.doi.org/10.1016/j.ecolmodel.2009.07.023


J.H. Janse et al. / Ecological Modelling 221 (2010) 654–665 655

revealed that nutrient dynamics is strongly influenced by the pres-
ence of macrophytes in these lakes (e.g. Scheffer, 1998; Jeppesen
et al., 1998), as they constitute an additional pool (permanent or
seasonal) for retention of nutrients and an additional link between
water column and sediment. Hence, macrophyte-dominated lakes
can have a high transparency and a low chlorophyll level despite
a rather high nutrient loading (whereas in the traditional models,
shallow lakes would end up almost inevitably as (hyper)eutrophic
regardless of their loading). A high transparency is also is a key
factor for the survival of submerged macrophytes (e.g. Spence,
1982; Chambers and Kalff, 1985; Jeppesen et al., 1998); hence it
can be both cause and result of macrophyte dominance. These
mutual relationships, besides other mechanisms, lead to the often
observed non-linear behaviour of shallow lakes (Scheffer, 1998).
Shallow lakes typically can be in one of two contrasting (equilib-
rium) states: a clear state with submerged macrophytes or a turbid
state dominated by phytoplankton. Eutrophication by excess input
of nutrients (phosphorus and nitrogen) may cause a switch from
the clear to the turbid state, if the nutrient loading exceeds a critical
value (e.g. Carpenter et al., 1992; Scheffer et al., 1993; Gunderson
and Pritchard, 2002). This is generally considered as undesirable,
because natural communities characterized by macrophytes and
a rich fish fauna disappear and biodiversity decreases. Recovery
of the clear state is difficult, as the critical loading for the switch
back is often lower (hysteresis). A system of interacting ecolog-
ical processes makes both states stabilize themselves (Scheffer,
1998).

These phenomena were studied extensively by means of ‘min-
imal models’ (Scheffer, 1998), but few models combine both
nutrient cycles, phytoplankton and macrophytes in a dynamic way.
This is the aim of the model PCLake (Janse, 1997, 2005), a dynamic
model of nutrient cycling and biota (including phytoplankton,
macrophytes and a simplified food web) in shallow lakes. The objec-
tives of this model are to estimate the critical nutrient loading levels
for this switch, both ‘forward’ and ‘backward’, to determine how
these levels depend on lake features and management factors, and
to identify the key processes determining the switch.

Janse et al. (2008) showed that the model can indeed be used
to estimate these threshold values, and concluded that the critical
loading levels depend, among others, on the water depth, lake area,
retention time, type of sediment and relative area of marsh zone.
The present paper concentrates on the model calibration and on the
estimation of the uncertainty in the predictions due to parameter
variations.

1.2. Uncertainty

Although ecosystem models are often useful tools for the study
of environmental problems, they contain a great deal of uncer-
tainty, coming from different sources (e.g. Chapra and Reckhow,
1983; Van Straten, 1986; Somlyódi and Van Straten, 1986; Beck,
1987; Hilborn and Mangel, 1997; De Blois, 2000; Jørgensen and
Bendoricchio, 2001). (a) Some of the uncertainty lies in the model
structure itself, as we do not know whether the model is a cor-
rect representation (in view of the objectives of the model) of
the system studied. Several possible model structures might be
an equally good representation of the system. (b) Another source
of uncertainty are the parameter values, which often can only be
estimated and/or exhibit an inherent variability because of spa-
tial, temporal and/or species variations. (c) This problem is even
enhanced if the model is to be suitable for different situations. (d)
Among these parameters are also the initial conditions of the sys-
tem, which might influence the results in non-linear models. (e)
Finally, when model results are compared with measured data, also
these data exhibit a certain level of uncertainty. So, we have to do
with ‘intentional’ uncertainty (because of natural variability) and

unintentional uncertainty (because our knowledge of the system is
incomplete).

Ecological models thus typically are poorly identifiable systems,
and PCLake is no exception. A compromise usually has to be found
between ‘physicality’ (the model structure should be related to the
causal mechanisms acting in the system under study) and ‘iden-
tifiability’ (it should be possible to estimate the unknown model
parameters from available data) (Reichert and Omlin, 1997; Omlin
et al., 2001). PCLake was set up in a way to remain close to the causal
relationships in the lake, to meet the objective of applicability in
a broad range of external factors (extrapolation). The disadvan-
tage of this is the occurrence of many parameters which are poorly
identifiable from an existing, typically limited, data set. Hence, an
‘overparameterized’ model was preferred over an ‘overly simple’
model. For this kind of models, the Bayesian approach for param-
eter estimation and prediction uncertainty is regarded as the most
adequate (e.g. Reckhow and Chapra, 1983, p. 51; Klepper, 1997;
Reichert and Omlin, 1997; Omlin and Reichert, 1999; Hilborn and
Mangel, 1997), for several reasons:

- The Bayesian method can deal with probability distributions of
parameters (and model structures), in contrast to traditional cal-
ibration where one seeks for single-point estimates.

- The method combines in the analysis prior knowledge of param-
eters and processes with information contained in the data. This
prior knowledge replaces to some extent the (non-existing) data
outside the domain of the data set.

- The approach directly yields an uncertainty analysis when used
as a prediction tool.

Drawbacks of the method are a loss of accuracy, with wider (but
probably more realistic) uncertainty bounds, and an increase in
computational demands because many model runs are required.

Hence, we adopt the Bayesian way of model evaluation, real-
izing that model parameters are ill-defined, intrinsically variable
entities, rather than well-defined, fixed numbers. The focus in this
project is on the model predictions; the parameter values are only
of intermediate interest. The main topic is how the parameter
uncertainties propagate in the uncertainties of the model results
and predictions, which then can be given in a probabilistic way. We
follow the method previously outlined by Aldenberg et al. (1995).
In brief, the so-called posterior parameter distribution is based on
a combination of prior knowledge and the likelihood, a measure for
the degree of fit between model and data. The likelihood is used as a
weighing factor for each run (parameter combination). The result-
ing set of predictions is the posterior predictive distribution (which
is usually narrower than the prior predictive distribution, i.e. before
the calibration). In practice, the weight is based on the sum of
squared residuals (differences between simulations and data) as
commonly used in regression analysis (Box and Tiao, 1973/1992).
The posterior parameter distribution is thus inversely proportional
to the sum of squares raised to the power n/2, with n the number
of observations. For two or more variables, the probability function
can be approximated as the product of the sums-of-squares.

Prior to the likelihood calculations, however, a sensitivity anal-
ysis is needed as a first step in the model analysis, to determine
which parameters have the most influence on the model results.
This step is important in order to make a preselection of parame-
ters for calibration. The parameters to focus on are the ones that
are both sensitive and uncertain (Van Straten, 1986). The sensitiv-
ity analysis can be applied to both the model outputs themselves,
and to the likelihood measure (or fit function). The latter set may be
smaller than the first one, e.g. a parameter may have great influence
in a region with low likelihood (Ratto et al., 2000).

In this paper, the PCLake model is evaluated by a method com-
bining these three steps, viz. sensitivity analysis, calibration and
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