
Ecological Modelling 221 (2010) 2167–2176

Contents lists available at ScienceDirect

Ecological Modelling

journa l homepage: www.e lsev ier .com/ locate /eco lmodel

An IT perspective on integrated environmental modelling: The SIAT case

P.J.F.M. Verweij a,∗, M.J.R. Knapena, W.P. de Wintera, J.J.F. Wiena, J.A. te Rollera,
S. Sieberb,1, J.M.L. Jansena

a ALTERRA, Wageningen-UR, Droevendaalsesteeg 3, 6708 PB, Wageningen, The Netherlands
b ZALF, Leibniz Centre for Agricultural Landscape Research, Eberswalder Straße 84, D-15374, Müncheberg, Germany

a r t i c l e i n f o

Article history:
Available online 23 February 2010

Keywords:
Software development process
Software architecture
Modelling
Integrated assessment
Assessment tool

a b s t r a c t

Policy makers have a growing interest in integrated assessments of policies. The Integrated Assessment
Modelling (IAM) community is reacting to this interest by extending the application of model develop-
ment from pure scientific analysis towards application in decision making or policy context by giving
tools a higher capability for analysis targeted at non-experts, but intelligent users. Many parties are
involved in the construction of such tools including modellers, domain experts and tool users, result-
ing in as many views on the proposed tool. During tool development research continues which leads to
advanced understanding of the system and may alter early specifications. Accumulation of changes to
the initial design obscures the design, usually vastly increasing the number of defects in the software.
The software engineering community uses concepts, methods and practices to deal with ambiguous
specifications, changing requirements and incompletely conceived visions, and to design and develop
maintainable/extensible quality software. The aim of this paper is to introduce modellers to software
engineering concepts and methods which have the potential to improve model and tool development
using experiences from the development of the Sustainability Impact Assessment Tool. These range from
choosing a software development methodology for planning activities and coordinating people, technical
design principles impacting maintainability, quality and reusability of the software to prototyping and
user involvement. It is argued that adaptive development methods seem to best fit research projects, that
typically have unclear upfront and changing requirements. The break-down of a system into elements
that overlap as little as possible in features and behaviour helps to divide the work across teams and to
achieve a modular and flexible system. However, this must be accompanied by proper automated testing
methods and automated continuous integration of the elements. Prototypes, screen sketches and mock-
ups are useful to align the different views, build a shared vision of required functionality and to match
expectations.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The last three decades the environmental modelling commu-
nity has developed numerous models (Reynolds and Acock, 1997;
Papajorgji et al., 2004). These modelling efforts have evolved
from single disciplinary to interdisciplinary models “to allow for
a better understanding of complex phenomena enabling the eval-
uation of the whole cause effect chain from a synoptic perspective
by combining, interpreting and communicating knowledge from
diverse scientific disciplines” (Rotmans and Dowlatabadi, 1998).
Integrated Assessment Modelling (IAM) simulates both the natural

∗ Corresponding author at: Tel.: +31 317 481601; fax: +31 317 489000.
E-mail address: peter.verweij@wur.nl (P.J.F.M. Verweij).

1 Current address: European Commission, Joint Research Centre (JRC), Institute
for Prospective Technological Studies (IPTS), Edificio Expo, Avda, Inca Garcilaso s/n,
41092 Seville, Spain.

and socio-economic systems in applications like scenario analysis
and evaluation of the environmental, economic and social conse-
quences of different policy strategies (Parker et al., 2002; Van de
Sluijs, 2002).

Policy makers have a growing interest in integrated assess-
ments of policies (Van Ittersum and Brouwer, 2009) on which the
IAM community is reacting by extending the application of model
development from pure scientific analysis towards application in
decision making or policy context (Matthies et al., 2007; Sterk et
al., 2009).

Typically many individuals from different institutions, diverse
background and roles are involved in the development of an IAM
(Hinkel, 2009), modellers, indicator experts, domain experts, tool
users, software engineers, managers and donor representatives,
resulting in as many views on the proposed tool which especially
in the early phases are not always exactly envisioned. Dissenting
views may continue to exist unnoticed when design is not made
concrete from the beginning. Even during the development advanc-

0304-3800/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.ecolmodel.2010.01.006

http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:peter.verweij@wur.nl
dx.doi.org/10.1016/j.ecolmodel.2010.01.006


2168 P.J.F.M. Verweij et al. / Ecological Modelling 221 (2010) 2167–2176

ing research continues to lead to an improved understanding of the
system. Therefore, early specifications tend to be altered later on.
Accumulation of changes to the initial design obscures the design,
usually vastly increasing the number of defects in the software
(Larman, 2004).

Initial IAM was targeted at the development of comprehensive
integrated systems, like the RAINS model (Alcamo et al., 1990), or
IMAGE model (Rotmans, 1990). Current IAM development focuses
at the modelling itself e.g., steps to develop a model (Jakeman
et al., 2006); participatory modelling (Voinov and Gaddis, 2008);
quality assurance in modelling (Scholten et al., 2007), or on mod-
ularity to allow configuration in accordance with the question at
hand (Reynolds and Acock, 1997; Donatelli et al., 2002; Gijsbers
et al., 2002; Argent, 2004; Leimbach and Jaeger, 2004; Papajorgji
et al., 2004; Hinkel, 2009). Although IAM models are implemented
through software, IAM seems to make little use of software engi-
neering methodologies. The software engineering community uses
concepts, methods and practices to deal with ambiguous specifica-
tions, changing requirements and incompletely conceived visions,
and to design and develop maintainable/extensible quality soft-
ware while safeguarding usability aspects.

This paper aims to introduce environmental modellers to soft-
ware engineering concepts and methods which have the potential
to improve model and tool development. Experiences with the
development of the Sustainability Impact Assessment Tool (SIAT)
will serve as an illustrative case study.

Section 2 introduces some important software engineering con-
cepts and methods which can have a large effect on software quality
and are easy to implement. All of these concepts and methods were
used for the development of SIAT as explained in Section 3. Finally,
Section 4, discusses what has been learned by applying the soft-
ware engineering concepts and methods for the development of
SIAT, confronts it with literature and concludes by explaining its
added value to IAM development in general.

2. Software engineering methods and concepts

Software engineering is a field of study concerning the applica-
tion of a systematic and disciplined approach for the development,
operation and maintenance of complex software (Abran and Moore,
2004). Main clusters of interest are: (i) the process – how to get from
system requirements to a product; (ii) structure – the design of the
system; (iii) technology – what technology will be (re)used, and;
(iv) organization – assign tasks to responsible individuals and/or
organizations. Software quality assurance (Srivastava and Kumar,
2009) intersects with all clusters.

IAM is at an early stage of applying software engineering princi-
ples. The following paragraphs introduce elementary methods and
concepts which can have a large effect on quality and are easy to
implement.

2.1. Software development methodology

A common metaphor for software engineering is construction.
This metaphor works out well when all requirements can be spec-
ified upfront in detail. Typically in research projects requirements
are not clear from the beginning. Here the gardening metaphor
from Hunt and Thomas is more suitable (Hunt and Thomas, 1999).
Constant work is needed to keep it in the required shape. Choos-
ing the right development process is a critical success factor to the
development and use of a software system.

A software development methodology is a prescriptive model
that establishes the order in which a project specifies, prototypes,
designs, implements, reviews, tests and performs its activities.
It primarily exists to co-ordinate people involved in the devel-
opment of the software (Cockburn, 2000): architects, designers,

implementers, testers, users, researchers and project co-ordinators.
Literature gives us many development methods to choose from,
varying from the formal Rational Unified Process (Kruchten, 2003)
and strictly phased waterfall method (Royce, 1970) to highly adap-
tive agile methods like eXtreme Programming (Beck and Andres,
2004), SCRUM (Schwaber and Beedle, 2001), or Chrystal (Cockburn,
2004). Agile methods demand to get continuous user feedback dur-
ing short design-implement-test-deliver iterations.

Which method to choose depends on: (i) understanding of sys-
tem requirements and the ability to update them during project
execution; (ii) software development expertise; (iii) team size and
team distribution; (iv) decision making, leadership and culture; (v)
necessity to have visual presentations before the end of the project,
either for customers, or management; and (vi) predefined sched-
ule constraints (McConnell, 1996; Cockburn, 2000; Tate, 2005;
Poppendieck and Poppendieck, 2006).

2.2. Domain analysis

A common language and a shared understanding of the applica-
tion context by all stakeholders is crucial as this is the basis for
further analysis. The design of a software product starts there-
fore by analysing the conceptual domain to which the software
applies. A conceptual domain analysis yields common grounds for
further specific analysis (Champeaux et al., 1993) by identifying,
collecting, organizing, and representing the relevant information
in a domain, based upon the study of knowledge captured from
users and domain experts by means of workshops and interviews;
underlying theory in literature; and the study of existing sys-
tems within the domain. Domain analysis carefully delineates the
domain being considered, organizes an understanding of the rela-
tionships between the various elements in the domain, considers
commonalities and differences of the systems in the domain and
represents this understanding in a useful way (Nilsen et al., 1994).
Result of the analysis is a domain model: a simplified, abstract image
of reality. In the analysis notions from the domain and relations
between those notions are described.

2.3. Usability and prototyping

A broader scope and applicability can be achieved when an
assessment tool is targeted at the less technical experienced
user (Matthies et al., 2007). Within the User Centered Design
approach (Raskin, 2000) usability requirements drive the features
and technical development by studying the usefulness with the
intended users. Central usability characteristics include: learnabil-
ity, efficiency, memorability, low error rate and satisfaction of
user experiences when working with the software (Nielsen, 1992;
Holzinger, 2005).

Prototypes of an interface design can be used to test usabil-
ity with users. Holzinger (2005) gives an overview on methods to
inspect and test usability aspects with prototypes. Prototypes can
be incomplete versions of the software product, but may as well be
screen designs in a software presentation tool, or even hand drawn
sketches on paper (Sefelin et al., 2003). They allow users to evaluate
developers’ proposals for the interface construction of the product
by actual testing, rather than having to interpret and valuate the
design based on descriptions. The main objective of a prototype is
to find out if the developers are on the right track and to further
feed requirement discussion.

Prototypes are also useful to test technical issues, such as perfor-
mance, interfacing between components and service availability. In
general a prototype is an inexpensive way to try out ideas so that
as many issues as possible are understood before the real imple-
mentation is made (Tate, 2005).



Download English Version:

https://daneshyari.com/en/article/4377133

Download Persian Version:

https://daneshyari.com/article/4377133

Daneshyari.com

https://daneshyari.com/en/article/4377133
https://daneshyari.com/article/4377133
https://daneshyari.com

