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The folded hypercube is a well-known variation of hypercube structure and can be 
constructed from a hypercube by adding a link to every pair of vertices with complementa-
ry addresses. An n-dimensional folded hypercube (FQn for short) for any odd n is known to 
be bipartite. In this paper, let f be a faulty vertex in FQn . It has been shown that (1) Every 
edge of FQn −{ f } lies on a fault-free cycle of every even length l with 4 ≤ l ≤ 2n − 2 where 
n ≥ 3; (2) Every edge of FQn − { f } lies on a fault-free cycle of every odd length l with 
n + 1 ≤ l ≤ 2n − 1, where n ≥ 2 is even. In terms of every edge lies on a fault-free cycle of 
every odd length in FQn − { f }, our result improves the result of Cheng et al. (2013) where 
odd cycle length up to 2n − 3.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Design of interconnection networks (networks for short) is an important integral part of parallel processing and distributed 
systems. The hypercube is a well-known interconnection network model. The hypercube has several excellent properties, 
such as recursive structure, regularity, symmetry, small diameter, short mean internode distance, low degree, and much 
smaller edge complexity, which are very important for designing massively parallel or distributed systems [16]. Numerous 
variants of the hypercube have been proposed in the literature [3,4,19]. One variant that has been the focus of a great deal 
of research is the folded hypercube, which can be constructed from a hypercube by adding a link to every pair of nodes 
that are the farthest apart, i.e., two nodes with complementary addresses. The folded hypercube has been shown to be able 
to improve the system’s performance over a regular hypercube in many measurements, such as diameter, fault diameter, 
connectivity, and so on [3,22].

An important feature of an interconnection network is its ability to efficiently simulate algorithms designed for other 
architectures. Such a simulation can be formulated as network embedding. An embedding of a guest network G into a host 
network H is defined as a one-to-one mapping f from nodes in G into nodes in H so that a link of G corresponds to a 
path of H under f [16]. The embedding strategy allows us to emulate the effect of a guest graph on a host graph. Then, 
algorithms developed for a guest graph can also be executed well on the host graph.

Linear arrays and rings, which are two of the most fundamental networks for parallel and distributed computation, are 
suitable for designing simple algorithms with low communication costs. Numerous efficient algorithms designed on linear 
arrays and rings for solving various algebraic problems and graph problems can be found in [16]. These algorithms can 
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be used as control/data flow structures for distributed computing in arbitrary networks. An application of longest paths to 
a practical problem was encountered in the on-line optimization of a complex Flexible Manufacturing System [1]. These 
applications motivate the embedding of paths and cycles in networks.

Since faults may occur when a network is put into use, it is practically meaningful and important to consider faulty 
networks. Previously, the problem of fault-tolerant cycle embedding on an n-dimensional folded hypercube FQn has been 
studied in [7–9,11–15,22,25,26].

Let F F v and F Fe be the sets of faulty vertices and faulty edges of FQn . Dajin Wang [22] showed that FQn − F Fe
1

contains a Hamiltonian cycle of length 2n if |F Fe| ≤ n − 1. Ma [18] showed that FQn − F Fe contains a Hamiltonian cycle 
of length 2n where each vertex is incident with at least two fault-free edges, when |F Fe| ≤ 2n − 3. Hsieh [8] showed that 
FQn − F Fe remains Hamiltonian-connected if |F Fe| ≤ n − 2, where n ≥ 2 is even, and showed that FQn − F Fe remains 
strongly (respectively, hyper) Hamiltonian-laceable if |F Fe| ≤ n − 1 (respectively, |F Fe| ≤ n − 2), where n ≥ 3 is odd. Fu [5]
showed that FQn − F Fe − F F v contains a cycle of length at least 2n − 2|F F v | if |F Fe| ≤ n − 1 and |F F v | + |F Fe| ≤ 2n − 4. 
Xu [24] showed that every edge of FQn lies on a cycle of every even length from 4 to 2n; if n is even, every edge of FQn also 
lies on a cycle of every odd length from n + 1 to 2n − 1. After that Xu [25] extended the above result to show that every 
fault-free edge of FQn − F Fe lies on a cycle of every even length from 4 to 2n; if n is even, every edge of FQn − F Fe also lies 
on a cycle of every odd length from n + 1 to 2n − 1, where |F Fe| ≤ n − 1. Recently, Cheng [2] showed that every fault-free 
edge of FQn − F F v lies on a cycle of every even length from 4 to 2n − 2|F F v | if n ≥ 3, and if n ≥ 2 is even, every edge of 
FQn − F F v also lies on a cycle of every odd length from n + 1 to 2n − 2|F F v | − 1, where |F F v | ≤ n − 2. In this paper, we 
extend Cheng’s [2] results to embedding more cycles on FQn with faulty vertex f . We obtain the following two properties:

1. Every edge of FQn − { f } lies on a fault-free cycle of every even length l with 4 ≤ l ≤ 2n − 2 where n ≥ 3;
2. Every edge of FQn − { f } lies on a fault-free cycle of every odd length l with n + 1 ≤ l ≤ 2n − 1, where n ≥ 2 is even.

Throughout this paper, a number of terms—network and graph, node and vertex, edge and link—are used interchangeably. 
The remainder of this paper is organized as follows: in Section 2, we provide some necessary definitions and notations. We 
present our main result in Section 3. Some concluding remarks are given in Section 4.

2. Preliminaries

A graph G = (V , E) is an ordered pair in which V is a finite set and E is a subset of {(u, v) | (u, v) is an unordered pair
of V }. We say that V is the vertex set and E is the edge set. We also use V (G) and E(G) to denote the vertex set and edge 
set of G , respectively. Two vertices u and v are adjacent if (u, v) ∈ E . A graph G = (V 0 ∪ V 1, E) is bipartite if V 0 ∩ V 1 = ∅
and E ⊆ {(x, y) | x ∈ V 0 and y ∈ V 1}. A path P [v0, vk] = 〈v0, v1, . . . , vk〉 is a sequence of distinct vertices in which any two 
consecutive vertices are adjacent. We call v0 and vk the end-vertices of the path. In addition, a path may contain a subpath, 
denoted as 〈v0, v1, . . . , vi, P [vi, v j], v j, v j+1, . . . , vk〉, where P [vi, v j] = 〈vi, vi+1, . . . , v j−1, v j〉. The length of a path is the 
number of edges on the path. A path 〈v0, v1, . . . , vk〉 forms a cycle if v0 = vk and v0, v1, . . . , vk−1 are distinct. A vertex is 
fault-free if it is not faulty. An edge is fault-free if the two end-vertices and the edge between them are not faulty. A path 
(respectively, cycle) is fault-free if it contains no faulty edges.

A bipartite graph G is Hamiltonian-laceable if there exists a Hamiltonian path between any two vertices from different 
partite sets. A Hamiltonian-laceable graph G = (V 0 ∪ V 1, E) is strong [6] if there is a simple path of length |V 0| + |V 1| − 2
between any two nodes of the same partite set. A Hamiltonian-laceable graph G = (V 0 ∪ V 1, E) is hyper-Hamiltonian lace-
able [17] if for any vertex v ∈ V i , i = 0, 1, there is a Hamiltonian path of G − v 2 between any two vertices of V 1−i . For 
graph-theoretic terminologies and notations not mentioned here, see [23].

An n-dimensional hypercube Q n can be represented as an undirected graph such that V (Q n) consists of 2n vertices which 
are labeled as binary strings of length n from 00 . . . 0

︸ ︷︷ ︸

n

to 11 . . . 1
︸ ︷︷ ︸

n

. Each edge e = (u, v) ∈ E(Q n) connects two vertices u and 

v if and only if u and v differ in exactly one bit of their labels, i.e., u = bnbn−1 . . .bk . . .b1 and v = bnbn−1 . . .bk . . .b1, where 
bk is the one’s complement of bk , i.e., bk = 1 − i iff bk = i for i = 0, 1. We call that e is an edge of dimension k. Clearly, each 
vertex connects to exactly n other vertices. In addition, there are 2n−1 edges in each dimension and |E(Q n)| = n ·2n−1. Fig. 1
shows a 2-dimensional hypercube Q 2 and a 3-dimensional hypercube Q 3.

Let x = xnxn−1 . . . x1 be an n-bit binary string. For 1 ≤ k ≤ n, we use x(k) (respectively, x̄) to denote the binary strings 
yn yn−1 . . . y1 such that yk = 1 − xk and xi = yi for all i �= k (respectively, yi = 1 − xi for all 1 ≤ i ≤ n). The Hamming distance
h(x, y) between two vertices x and y is the number of different bits in the corresponding strings of both vertices. The 
Hamming weight hw(x) of x is the number of i’s such that xi = 1. Note that Q n is a bipartite graph with two partite sets 
{x | hw(x) is odd} and {x | hw(x) is even}. Let dQ n (x, y) be the distance between two vertices x and y in graph Q n . Clearly, 
dQ n (x, y) = h(x, y).

1 The graph obtained by deleting F Fe from FQn .
2 The graph obtained by deleting v from G .
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