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a b s t r a c t

We study a class of chain-binomial metapopulation models, giving special attention to the
‘mainland–island’ configuration, where patches receive immigrants from an external source. We evalu-
ate the distribution of the number nt of occupied patches at any census time t and establish a law of large
numbers that identifies a deterministic trajectory which can be used to approximate the process when
the number of patches is large. We also establish a central limit law, which shows that the fluctuations
about this trajectory are approximately normally distributed. We describe briefly much finer results that
can be used for model calibration.

Crown Copyright © 2010 Published by Elsevier B.V. All rights reserved.

1. Introduction

The term ‘metapopulation’ is used to describe individuals of a
species living as a group of local populations in geographically sep-
arate, but connected, habitat patches (Levins, 1970; Hanski, 1999).
Patches may become empty through local extinction and empty
patches may be recolonised by immigrants from other local pop-
ulations. A balance between local extinction and colonisation may
be reached which allows the metapopulation to persist (Hanski,
1999). The relationship between these two processes is there-
fore an important consideration when formulating mathematical
metapopulation models. We suppose that events of the same type
occur in seasonal phases, so that extinction events only occur dur-
ing the extinction phase and colonisation events only occur during
the colonisation phase, and that these phases alternate over time.
They may correspond to two parts of an annual cycle, for exam-
ple, where local populations are prone to extinction during winter
whilst new populations establish during spring.

We assume that a census takes place either at the end of
the colonisation phase (. . . –extinction–colonisation–census–. . . )
or at the end of the extinction phase (. . . –colonisation–
extinction–census–. . . ), and thus fits naturally within a discrete-
time modelling framework. If extinction and colonisation events
were to occur in random order, then a continuous-time model
would of course be preferred. Here we use a discrete-time Markov
chain whose state nt is the observed number of occupied patches
at the t-th census. Its transition matrix is the product of two transi-
tion matrices that govern the individual extinction and colonisation
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processes. This approach has been used previously and several
models have been proposed (Akçakaya and Ginzburg, 1991; Day
and Possingham, 1995; Hill and Caswell, 2001; Klok and De Roos,
1998; Tenhumberg et al., 2004; Rout et al., 2007). Each model
accounts for local extinction in the same way, but different methods
are used to model the colonisation process, reflecting the differ-
ing breeding habits and means of propagation of the particular
species under investigation. Whilst they account for a range of
colonisation behaviour, the models were examined using numeri-
cal methods and simulation, and few explicit analytical results were
obtained. Furthermore, only the extinction–colonisation–census
scenario was considered. Whilst it is certainly true that timing
of the census is arbitrary in that it does not affect the dynam-
ics of the metapopulation (Day and Possingham, 1995), its timing
may affect the efficiency of any statistical procedures used to cal-
ibrate the models and successful implementation of management
actions.

We present a new and quite general approach to modelling
the colonisation process, one that permits explicit expressions
for a variety of quantities of interest. We concentrate here on a
mainland–island configuration: the patches (islands) receive immi-
grants from an external source (the mainland), assumed to be
immune from extinction. We evaluate the distribution of nt at any
census time t. We then establish a law of large numbers that iden-
tifies a deterministic trajectory which can be used to approximate
(nt, t ≥ 0) at any time t when the number of patches is large. We
also establish a central limit law, which shows that the fluctuations
about this trajectory are approximately normally distributed. These
results are useful in understanding the patch-occupancy process
when the parameters of the model are known. For example, the
mean and variance of nt , and the expected time to first total extinc-
tion, can be exhibited explicitly. We describe briefly much finer
results that can be used for model calibration.
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2. Patch-occupancy models

Stochastic patch-occupancy models (SPOMs) which assume that
extinction and colonisation occur in distinct phases in discrete-
time can be categorised as (i) heterogeneous SPOMs (Akçakaya
and Ginzburg, 1991; Day and Possingham, 1995) or (ii) homoge-
neous SPOMs (Daley and Gani, 1999; Hill and Caswell, 2001; Klok
and De Roos, 1998; Rout et al., 2007; Tenhumberg et al., 2004).
Heterogeneous SPOMs use a vector of size N to describe the pres-
ence/absence of occupants in an N-patch metapopulation, the k-th
component being 1 or 0 according to whether the k-th patch is
occupied or empty. Local extinction and colonisation event prob-
abilities can be patch-specific, such as in Akçakaya and Ginzburg’s
(1991) 3-patch model for the endangered Mountain Gorilla (Gorilla
gorilla beringei) metapopulation in Uganda, or vary according to
patch size and position as demonstrated in Day and Possingham’s
(1995) 8-patch model for the malleefowl (Leipoa ocellata) metapop-
ulation in South Australia. Since there are 2N possible states, the
analysis of these models quickly becomes computationally expen-
sive as N increases. Homogeneous SPOMs on the other hand simply
record the number of occupied patches and therefore have only
N + 1 states for an N-patch metapopulation, entailing computa-
tionally inexpensive analysis even for large (N = 50) networks.
Whilst patches are assumed to behave in the same way, these mod-
els can account implicitly for spatial arrangement by allowing the
colonisation probabilities to depend on the number of occupied
patches. They have additional appeal because, as we shall see, they
can be analytically tractable. Two-phase homogeneous SPOMs are
usually based on the following approach to modelling the extinc-
tion and colonisation processes.

2.1. Extinction and colonisation

Occupied patches are assumed to go extinct independently, each
with the same probability e. Hence, given i patches initially occu-
pied, the number that survive the extinction process follows a
binomial Bin(i, 1 − e) law. With j patches remaining after the extinc-
tion phase, the N − j empty patches either remain empty or are
colonised during the subsequent colonisation phase. In modelling
the colonisation process one must consider how individuals dis-
perse through the metapopulation network. Hill and Caswell (2001)
assume implicitly that propagules arrive at each patch according to
a homogeneous Poisson process with rate ˇi/N, where i is the num-
ber of patches currently occupied and ˇ is the expected number
of propagules produced by each occupied patch. Thus, the prob-
ability that one or more propagules arrive at any given patch is
ci = 1 − exp(−ˇi/N), and so the number of colonisation events fol-
lows a binomial Bin(N − i, ci) law. Their model goes one step further
in allowing only a fixed subset of the N patches to be suitable for
habitation.

Klok and De Roos (1998) suppose that colonisation comprises
two separate processes: (i) reproduction, which determines the
number of juveniles born to adults that survive the preceding
extinction phase (each adult occupying one patch or ‘territory’), and
(ii) settlement, which determines how many patches are colonised
by juveniles. Each process is governed by its own transition matrix
and these are multiplied to produce the overall transition matrix
for the colonisation phase. Their model was designed to study the
common shrew (Sorex araneus L.), which exhibits the three-phase
(extinction–reproduction–settlement) behaviour described.

Tenhumberg et al. (2004) and Rout et al. (2007) model a single
population of individuals with an assumed fixed population ceiling.
Their models track the number of female individuals, each produc-
ing either a maximum of one offspring (Tenhumberg et al., 2004),
or a binomially distributed number of offspring (Rout et al., 2007).

The total number of females resulting from the colonisation process
is then determined by a recursive formula.

These Markov chain models are often referred to as chain-
binomial models (Daley and Gani, 1999; Hill and Caswell, 2001),
because the numbers of patches/individuals remaining after each
phase is determined by a binomial distribution whose parameters
are determined by the result of the previous phase.

2.2. Timing of the census

Whilst the choice between taking the census after colonisation
or after extinction does not affect the dynamics of the metapopu-
lation, it is certainly important from an empirical perspective. For
example, Klok and De Roos (1998) chose to census after the coloni-
sation phase because the real shrew population was known to be
more stable at this time.

Our approach is similar. We introduce a homogeneous stochas-
tic patch-occupancy model of a similar design to those described,
but with a quite general approach to modelling colonisation. We
study both census scenarios and present analytical results for both,
concentrating here on the mainland–island configuration.

3. A chain-binomial model with state dependent
colonisation probabilities

Suppose there are N patches. Let nt be the observed number
occupied at census time t ∈ {0, 1, . . . } and suppose that (nt, t ≥ 0) is
a discrete-time Markov chain that takes values in S = {0, 1, . . . , N}
with transition probabilities P = (pij). The colonisation and extinc-
tion processes are governed by their own transition matrices, E =
(eij) and C = (cij), respectively, so that P = EC (the EC model) if the
census is taken just after the colonisation phase or P = CE (the CE
model) if the census is taken just after the extinction phase.

3.1. Extinction phase

Occupied patches are assumed to go extinct independently, each
with the same probability e (0 < e < 1). Thus, given i occupied at
the start of the extinction phase, the number that survive extinction
follows a Bin(i, 1 − e) law. Therefore

eij =
(

i
j

)
(1 − e)jei−j, forj = 0, . . . , i,

and eij = 0 for j > i.

3.2. Colonisation phase

Suppose that, given i occupied patches at the start of the coloni-
sation phase, the empty patches are colonised independently, each
with probability ci (0 < ci < 1). We call ci the colonisation poten-
tial (of i occupied patches). Thus, given i occupied (and hence N − i
unoccupied), the number of empty patches colonised during this
phase follows a Bin(N − i, ci) law. Therefore,

cij =
(

N − i
j − i

)
(1 − ci)

N−jcj−i
i

, for j = i, i + 1, . . . , N,

and cij = 0 for j < i. This general setup accommodates (among other
choices):

(i) ci = 1 − exp(−ˇi/N), which is Hill and Caswell’s (2001) specifi-
cation with ˇ being the propagation rate;

(ii) ci = (i/N)c, where the colonisation potential is proportional to
the number of occupied patches up to a fixed maximum coloni-
sation potential c ∈ (0, 1], the (hypothetical) probability that a
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