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a b s t r a c t

Resource competition is commonly occurred in animal populations and studied intensively by
researchers. Previous studies have applied game theoretic model by finding Nash equilibrium to inves-
tigate this phenomenon. However computation of the Nash equilibrium requires an understanding of
the payoff matrix that allocates the rewards received by players when they adopt each of the strate-
gies in the game. In our study we present a dynamic programming implemented framework to compute
2 × 2 intraspecific finite resource allocation game’s payoff matrix explicitly. We assume that two distinct
types of individuals, aggressive and non-aggressive, are in the population. Then we divide the entire ani-
mal development period into three different stages: initialization, quasilinear growth and termination.
Each stage for each type of players is specified with their own development coefficient, which deter-
mines how resource consumption could convert into strength as reward. Each player has equal and
finite resource at the beginning of their development and fights against other players in the population
to maximize its own potential reward. Based on these assumptions it is reasonable to use backward
induction dynamic programming to compute payoff matrix. We present numerical examples for three
different types of aggressive individuals and compute the payoff matrices correspondingly. Then we use
the derived payoff matrices to determine the Nash equilibrium and Evolutionary Stable Strategy. Our
research provide a framework for future quantitative studies on animal resource competition problems
and could be expanded to n-players interspecific stochastic asymmetric resource allocation problem by
changing some settings of dynamic programming formulation.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The initial concept of Game Theory was developed by Neumann
and Morgenstern (1944). Later Nash made significant contribution
to Game Theory by introducing the idea of Nash equilibrium. If
each player in the game chooses a strategy and no player can ben-
efit by changing its strategy while the other players keep theirs
unchanged, then the current set of strategy choices and the corre-
sponding payoffs constitute Nash equilibrium. Nash also proved
every finite game has mixed Nash equilibria and this idea has
become the keystone of Game Theory (Nash, 1950). Since then
Game Theory has been widely applied in various disciplines such
as social sciences, economics, political science, international rela-
tionship, computer science and philosophy (Osborne, 2004). Smith
and Price (1973) formalized another central concept in Game The-
ory called the Evolutionary Stable Strategy (ESS), which, if chosen
by a population of players, cannot be invaded by any alterna-
tive strategy that is initially rare. Various studies have been done
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using ESS to investigate animal competition behavior and evolu-
tionary path of them. Crowley (2000) studied the hawk-dove game
in symmetry payoff matrix and determined its ESS. Tainaka and
Itoh (2002) have studied cooperation and altruism in Prisoner’s
Dilemma. Matsumura and Hayden (2006) studied animal com-
munication using ESS model. Wolf and Mangel (2007) analyzed
compromise and cheating in predator-prey games. Hamblin and
Hurd (2009) also studied deceptive signaling during the games.

The simplest and most common case of game has 2 × 2 non-
cooperative form. Multiple players game is more realistic but
according to Poincare–Bendixson theorem (Strogatz, 2001), mul-
tiple players dynamic system would result in chaos and therefore
become relatively difficult to analyze. In our study we adopt 2 × 2
games. While the key concept in Game Theory is Nash equi-
librium, we should achieve the payoff matrix very carefully in
order to compute Nash equilibrium correctly. However, most of
the research studies regarding ESS have arbitrarily assigned val-
ues in payoff matrix. To overcome this problem, we want to use
some more realistic quantities to determine payoff matrix for the
game. Mesterton-Gibbons and Sherratt (2009) has shown a neigh-
bor intervention model and Luther et al. (2007) further discussed
whether food is worth fighting for during the game. Just et al. (2007)
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Table 1
Payoff matrix of non-cooperative general sum game.

Strategy Non-aggressive Aggressive

Non-aggressive (P111, P112) (P121, P122)
Aggressive (P211 , P212) (P221, P222)

Pijk denotes the payoff of player k when it uses strategy i and its competitor uses j.

has studied the payoff gained by aggressive player in a compet-
itive game. Followed by these ideas, we consider food resource
consumed by the animal might be a measurement to compute
the payoff matrix. However it ignores individual difference and
we consider using a function that links resource consumption and
potential body strength, the reward, to compute the payoff.

While we assume the food resource is finite, initially equivalent
to any player in the population, and animals have discrete devel-
opment stages, it is reasonable to use dynamic programming (DP)
to figure out the optimal foraging strategy as a resource allocation
problem. DP is a method of solving complex problems by breaking
them down into simpler steps. Kaewmanee and Tang (2003) used
an age-structured model to define cannibalism. Chambon-Dubreuil
et al. (2006) further investigated the effect of aggressive behavior
on age-structured populations. We treat animal growth as a logistic
function and divide the development into three distinct stages: ini-
tialization, quasilinear growth and termination. In different stages,
we assume the reward is a unique linear function of food resource.
Our goal is to determine the maximum total reward at the end
of growth using DP to determine the payoff value, which is rarely
applied in ecological research (Frelek, 1982).

Al-Tamimi et al. (2007) have suggested using dynamic program-
ming to implement Game Theory model for designing problems.
However their model is based on zero-sum game. In our study we
will first present a more realistic general sum game framework by
using DP to compute payoff matrix, discuss three different types
of aggressive players and calculate the numerical payoff matrix for
each case and determine the ESS for them, respectively. Our work is
the first of this kind to combine DP and Game Theory, two different
optimization tools together to solve real biological problems.

2. The model

A typical 2 × 2 non-cooperative general sum game has the form
shown in Table 1, where Pijk represents the payoff of player k when
it uses strategy i and its competitor uses the alternative strat-
egy j. Here we have two types of strategies: aggressive (2) and
non-aggressive (1). Aggressive players would fight their neighbor
and try to seize the neighbor’s resources. Non-aggressive players
only concentrate on their own resource and never fight back even
attacked by aggressive players. However, two aggressive players
would result in a severe fight and both players would be hurt
intensively. This setting is similar to that of “Chicken-Dare” or
“Hawk-Dove” game (Osborne, 2004). Mathematically, Nash equi-
librium in this game is defined as:

X ∈ � is a Nash equilibrium if X ∈ ˇ(x) where � is the mixed
strategy space and ˇ is the mixed strategy best response corre-
spondence. Because this is a 2 × 2 finite symmetric game �NE /= ∅.

From a population perspective we could define Evolutionary
Stable Strategy (ESS) as follows:

X ∈ � is an ESS if for every strategy Y /= X there exists some
εy ∈ (0, 1) such that u[X, εY + (1 − ε)X] > u[Y, εY + (1 − ε)X] holds
for all ε ∈ (0, εy) where ε is the proportion of mutant strategy.

Basically, ESS is a subset of Nash equilibrium. We use Maynard’s
criterion (Maynard, 1973) to test whether Nash equilibrium is an
ESS: �ESS = {X ∈ �NE : u(Y, Y) < u(X, X), ∀Y ∈ ˇ(X), Y /= X}.

To perform all these analyses, we first compute the payoff matrix
in our original game. We will use DP to determine the numeri-
cal payoff values for the four strategy combinations. Assume each
player has a total of N units of resources for the entire development
period initially and in each stage at least 1 resource should be con-
sumed in order to maintain basal metabolism. As we have discussed
before, the entire development is divided into three stages: growth
initialization, quasilinear growth and growth termination, hence
the player could possibly consume 1 to N − 2 units of resources in
each stage. While the growth is logistic and nonlinear, we could
use linear approximation in each stage as follows where y is the
reward in each stage and x is the number of units of resources
consumed:

y =
{

ax(growth initialization)
bx(quasilinear growth)
cx(growth termination)

Because logistic curve has a sigmoid shape and is usually sym-
metric, it is reasonable to set a = c to reduce computational
intensity. The coefficients a and b have biological meaning that
they determine the efficiency of converting resources into the
animal’s own energy or strength. In our model we assume b > a
because of their development characteristics. The DP model is
written as follows where z is total reward from food resource
that we want to maximize, i is development stage, xi is the
amount of resources consumed at stage i, N is total amount
of resources, ri is the conversion coefficient and r1 = a, r2 = b
and r3 = a:

Maxmize z =
3∑

i=1

rixi

Subject to
3∑

i=1

xi = N

We use backward induction, a solution method for finite-
horizon discrete-time dynamic optimization problems, to solve this
problem. The backward induction formulation is given as follows
(Howard, 1960):

Objective Value Function: fi(x) = optimal reward given x units of
resource are to be allocated at stage i, i = 1, 2, 3.
Argument: (i, x) = (stage, units of resource consumed).
Recurrent relation: fi(x) = maxxi=1,2...N−2[rixi + fi+1(x − xi)], by
principle of optimality (Bellman, 1952).
Boundary condition: f3(x) = r3x3.
Answer: f1(N). This specifies when the backward induction should
terminate.

For the non-aggressive and non-aggressive strategy combina-
tion, we assume both players do not interfere with each other. In
this case, we would only solve the DP for either one of them and
by symmetry the other player should adopt the same strategy to
maximize its total reward. The reward in each stage and state is
shown in Table 2 and we could calculate the optimal value using
DP.

For the non-aggressive and aggressive strategy combination, the
reward table is similar to Table 2. The difference is we should define
different resource-reward converting coefficients, a and b for both
strategies. For the aggressive and aggressive combination we will
also define the coefficients. Once we have computed the rewards for
each combination we could construct the payoff matrix, calculate
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