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a b s t r a c t

An Allee effect arising from density-dependent mating success can have significant impacts at the
ecosystem level when considered in the context of predator–prey interactions. These are captured by a
mathematical model for the exchange of biomass between a structured predator population (continuous
weight distribution) and a resource. Because the predator’s mating success affects the amount of resources
required for the production of offsprings and their future growth into mature organisms, it influences
the flux of biomass between trophic levels. Under simple assumptions, the equations can be reduced to
an equivalent unstructured predator–prey model in which the Allee effect modulates the predation rate:
the mating probability multiplies the rate of predator growth as well as the rate of resource depletion.
Implications of the Allee effect for the bifurcation structure and equilibrium densities are examined. The
model is compared to a modified version in which the Allee effect instead modulates the assimilation
efficiency, hence the mating probability does not appear in the dynamical equation for the resource den-
sity. Both models exhibit qualitatively similar dynamics. However, compared to the model in which the
Allee effect modulates predation, the model in which the Allee effect modulates assimilation efficiency
predicts (i) unrealistically inefficient resource assimilation when predator density is low, (ii) a higher risk
of catastrophic extinction resulting from a change in the parameter controlling the strength of the Allee
effect, and (iii) no possibility of an increase in population size when the density dependence is enhanced.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The positive feedback between per capita growth rate and popu-
lation density is known as the demographic Allee effect (Stephens et
al., 1999). It arises in animal populations when the mating success
depends on the probability of encountering mates (Dennis, 1989;
McCarthy, 1997; Courchamp et al., 1999; Stephens and Sutherland,
1999) and is associated with animal extinctions when there is a
critical density below which the population cannot increase. Allee
effects can be incorporated into single-species population models
simply by multiplying the reproduction function by the probabil-
ity of successful mating (Boukal and Berec, 2002). The resulting
density dependence has significant implications for population
dynamics; in simple deterministic models it has been shown to
drive abrupt population collapse (e.g. Dennis, 1989; McCarthy,
1997), induce chaotic transient fluctuations (Schreiber, 2003), and
stabilize asymptotic dynamics (Scheuring, 1999). The theoretical
framework finds applications in ecological conservation (Stephens
et al., 1999) and pest control (Boukal and Berec, 2009).

Multi-trophic systems also experience the consequences of
Allee effects (e.g., de Roos and Persson, 2002; de Roos et al., 2003;
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Webb, 2003). The consumption of resources will likely be influ-
enced by an Allee effect in the consumer population, and it may be
relevant to account for this effect in predator–prey models to cor-
rectly represent the transfer of biomass between trophic levels. For
example, to simulate the dynamics of krill in social aggregations, we
need to capture both the benefit of density-dependent mating and
the cost of resource depletion within aggregations (Verdy, 2008;
Verdy and Flierl, 2008).

Classical models of interacting species have been adapted
to include Allee effects, including models of host–parasitoid
(Deredec and Courchamp, 2006) and predator–prey interactions
(Courchamp et al., 2000; Kent et al., 2003; Zhou et al., 2005; Boukal
et al., 2007; Hadjiavgousti and Ichtiaroglou, 2008). In most cases,
the population with Allee effect is the one occupying the lowest
trophic level, i.e. the prey or host. The Allee effect can then be
included as in single-species models. An Allee effect in the preda-
tor, however, is not as straightforward to implement because it
modulates the interspecific interaction through life cycle processes
not represented in simple models. The intuitive approach is to
include a density-dependent function in the predator’s growth
term, but to assume no explicit effect on the prey (Bazykin, 1998;
Zhou et al., 2005). This implies a break in the symmetry between
the functions describing depletion of the resource (in the prey
equation) and uptake by the consumer (in the predator equation),
hence the mass budget is not properly closed. This limitation
can be particularly important when modeling systems in which
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biomass is the measured quantity, as is typically the case in studies
of small aquatic populations such as plankton communities.

In this paper, it is argued that the Allee effect modulates the pre-
dation rate, such that the mating probability multiplies the rate at
which resources are taken up as well as the rate at which they are
converted into consumer biomass. We derive a set of predator–prey
equations from a more complex physiologically-structured model
for a predator with density-dependent mating success (Section 2).
The approach is similar to the one used by de Roos et al. (2008) to
transform a continuous size-structured model into a discrete-stage
predator–prey (biomass) model. The structured model explicitly
represents the consumer’s life cycle and the utilization of resources
for reproduction and growth; it provides a quantitative frame-
work, based on biomass, that can be used for studying ecological
dynamics resulting from the interplay of life history and consumer-
resource interactions.

We examine the stability of asymptotic solutions in this model,
both analytically (Section 3) and numerically (Section 4). To high-
light the importance of including the Allee effect term in the
equation for the prey as well as the equation for the predator, we
compare the bifurcation structure in our model with that occurring
(i) in models without Allee effect and (ii) in models where the Allee
effect does not modulate the resource uptake. It is found that both
versions of the model with an Allee effect are qualitatively similar
from a dynamical point of view; for example, both support multiple
equilibria and bifurcations that can trigger the catastrophic collapse
of the predator population. However, significant quantitative dif-
ferences exist with regards to the parameter values for which these
bifurcations occur, as well as the sensitivity of bifurcations to the
parameters. We also examine the sensitivity of equilibrium densi-
ties (Section 5), and find that enhancing the density dependence
can lead to an increase in the steady-state predator population, a
counter-intuitive result that does not occur unless the Allee effect
modulates the resource uptake. The exchange of biomass between
prey and predator populations is discussed in Section 6.

In the model derivation below, we adopt the view that con-
sumption of resources is driven mainly by processes through which
predator biomass is generated, namely reproduction and growth.

2. Stage-structured model formulation

A dynamical model describes the interaction between a preda-
tor and a prey (or, more generally, of a consumer and a resource).
We begin with a model for a population continuously distributed
in weight space, whose life cycle consists of juvenile and mature
stages. This is converted into biomass equations and coupled to an
equation for the prey biomass. We then formulate an equivalent
unstructured predator–prey model by assuming a single stage for
the predator population.

2.1. Set-up

Dynamics of the predator population are described by a partial
differential equation adapted from the McKendrick–vonFoerster
equation for a population with weight-structure. There is a con-
tinuous weight distribution, with n = n(w, t) the number density
per unit weight. Growth is a function of the resource density, P.
This yields the model

∂n

∂t
+ ∂

∂w
G(w, P)n = −�n (1)

with boundary condition (representing the flux of newborns)

G(wB, P)n(wB, t) =
∫

B(w, P)�(n)n(w, t) dw (2)

where wB is the weight at birth, G is the growth function, B is the
density-dependent reproduction function, � is the mating prob-
ability, and � is the mortality rate. We assume that birth and
recruitment are limited by the availability of resources, and that
reproduction is a function of adult density; a constant mortality
rate is assumed. We impose n(∞, t) = 0.

The growth function, G, gives the rate at which weight increases;
it can depend on the current weight and generally increases with
the amount of resources available. The reproduction function gives
the rate at which newborns are produced; it can also depend on
the (parents) weight and the resource density. These functions
are decomposed into weight-dependent and resource-dependent
parts,

G(w, P) = g(w)f (P) (3)

B(w, P) = b(w)f (P) (4)

The resource is allowed to vary in time (we will write a dynamical
equation for P), hence the advection rate in (1) is time-dependent.
We can remove this time dependence by scaling time by f (P). Let
t∗ denote scaled time; then

∂n

∂t∗ + ∂

∂w
g(w)n = − �

f (P)
n (5)

This can be rewritten as

∂ñ

∂t∗ + ∂ñ

∂�
= − �

f (P)
ñ (6)

by introducing the changes of variables

ñ = gn (7)

�(w) =
∫ w

0

g−1 dw′ (8)

Eq. (6) can be solved using the method of characteristics:

ñ(�, t∗) = ñ(�B, t∗ − �)e
−
∫ t∗

t∗−�
�f (P)−1 dt′

(9)

where �B = �(wB) and � = �(w) − �(wB).
The solution, in scaled time, can then be expressed as

n(w, t∗) = g(wB)
g(w)

n(wB, t∗ − �)e
−
∫ t∗

t∗−�
df (P)−1 dt′

(10)

Now that we have the basic framework laid-out, we will examine
the specific case of a population with an Allee effect and a two-stage
life cycle.

2.2. Two-stage life cycle

We consider a simple life cycle for the predator population, con-
sisting of juvenile and adult stages. The life cycle is represented
schematically in Fig. 1: birth of new individuals supplies the juve-
nile stage, during which organisms develop; juvenile individuals
growth until they reach wA, at which point they become mature
and begin to reproduce.

The number of juveniles and adults is given by

NJ =
∫ wA

wB

n dw (11)

NA =
∫ ∞

wA

n dw (12)

Juveniles allocate all their resources to growth, and adults allocate
all their resources to reproduction, such that

g(w) =
{

g0w if w < wA

0 if w ≥ wA

(13)
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