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a b s t r a c t

In age-classified population models where all parameters are known, the generation time and growth
rate are calculated in a straightforward manner. For many populations, some parameters, such as juvenile
survival, are difficult to estimate accurately. In a simplified population model where fecundity and sur-
vival are constant from the onset of breeding, it is known that generation time may be calculated given
only adult survival, age at first reproduction, and the population growth rate. However, the assump-
tion of constant fecundity from the onset of breeding does not hold for many populations. An extended
population model allows calculation of generation time with the additional knowledge of the ratio of
age-specific fecundities compared to a maximum fecundity rate. When these relative fecundities are
unknown, an ad hoc adjustment to the simplified model performs well.

When the study population is in an ideal environment, the optimal generation time and maximum
growth rate are linked, and both may be approximated knowing only adult survival, age at first repro-
duction, and the relative fecundities. The maximum growth rate has important conservation implications,
and calculating it correctly is therefore important. Improper use of the simplified population model to
calculate the maximum growth rate, combined with a simple decision rule, leads to an average overhar-
vest of 36%, and >60% for three of six bird species studied, compared to the full population model. By
comparison, using the approximation from the extended or adjusted models results in average overhar-
vests of only 8% (extended model) and 5% (adjusted model), and <50% for all six species (either model).

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Generation time is an important parameter when studying pop-
ulation dynamics, and is particularly useful for understanding the
behaviour of matrix models. Age-classified matrix models may be
constructed to study a population when age-specific breeding and
survival rates are available (Leslie, 1945; Caswell, 2001), and sim-
plified models are often employed when demographic data are
incomplete (Oli, 2003; Skalski et al., 2008). One key area of study is
the sensitivity of the population growth rate to the different demo-
graphic parameters in the model (Caswell, 2001). Generation time
is related to the sensitivity of a population to changes in adult sur-
vival or fecundity (Lebreton and Clobert, 1993; Gaillard et al., 2005;
Lebreton, 2005; Stahl and Oli, 2006). In addition to studying sensi-
tivities, generation time is an important metric in other contexts.
For example, the intrinsic maximum growth rate per generation
is approximately constant (Fowler, 1988; Niel and Lebreton, 2005),
and generation time is also of interest in the study of evolution rates
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(Sarich and Wilson, 1973; Martin and Palumbi, 1993; Gillooly et al.,
2005). Failure to account for age-specific differences in fecundity
may lead to substantial bias in the estimation of generation time.

The relationship between generation time and maximum
growth rate may be used to calculate the ability of the population
to accommodate additional mortalities, or the potential biological
removal (PBR) using a simple decision rule (Wade, 1998; Taylor
et al., 2000; Niel and Lebreton, 2005; Dillingham and Fletcher,
2008). This rule can be used in a variety of settings (Dillingham and
Fletcher, 2008), but is most commonly used in assessing bycatch
limits (Moore et al., 2009). A key aspect of this rule is that an overes-
timate of �max leads to an overestimate of the PBR limits, potentially
leading to an overharvest of the population. Therefore, calculating
generation time correctly has an important management implica-
tion.

Various definitions of generation time exist (Leslie, 1966;
Caswell, 2001; Niel and Lebreton, 2005). The mean generation time
of a population is defined as

T̄ =
∞∑

i=1

ilifi�
−i (1)
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where li =
i∏

j=1

sj is the survival from birth to age i, si is the survival

from age i − 1 to i, fi is the annual fecundity at age i (mean num-
ber of young), and � is the annual growth rate of the population
(Leslie, 1966; Niel and Lebreton, 2005; Gaillard et al., 2005). For a
given age class, fecundity is the product of the proportion of animals
that are breeding times the mean number of young per breeder; s1
is the survival rate from birth to age 1. This definition of genera-
tion time was chosen as a suitable measure as it is insensitive to
senescence (Niel and Lebreton, 2005), which is not accounted for
in most population models; ignoring senescence may yield more
robust inferences than attempting to estimate its effect (Skalski et
al., 2008).

Niel and Lebreton (2005) and Gaillard et al. (2005) presented an
estimate of generation time based only on age at first breeding (˛),
adult survival (s), and population growth rate (�), assuming fecun-
dity and survival are constant from the onset of breeding (hereafter,
the constant-fecundity model). That is, in addition to assuming that
all individuals within an age class behave similarly, it is assumed
that all mature age classes are equivalent. Importantly, juvenile
survival, which is often difficult to estimate, does not appear in
the calculation of generation time. This is important because sur-
vival rates for juveniles are often difficult to estimate (Schwarz and
Arnason, 2000), as juvenile age classes may not be present in the
study area, and juvenile survival and emigration rates are typically
confounded. For this model, generation time is

T̄ = ˛ + s

� − s
(2)

When conditions are ideal, allometric relationships lead to a rela-
tionship between optimal generation time (T̄op) and maximum
growth rate (�max), via the approximation:

T̄opln �max ≈ araT (3)

where ar and aT are allometric coefficients associated with body
weight and generation time (Niel and Lebreton, 2005). Hence,
under ideal conditions:

�max ≈ exp

[
araT

(
˛ + s

�max − s

)−1
]

(4)

which can be easily solved using iterative methods. Niel and
Lebreton (2005) studied populations of 13 bird species undergo-
ing optimal or near optimal growth, and estimated that, for bird
species, araT ≈ 1 (asymmetric 95% CI: 0.98–1.15). Maximum growth
rates based on allometric relationships were compared to estimates
from matrix model methods (Caswell, 2001), and they found that
that there was a high level of correlation between the two estimates
(R = 0.88, excluding two Passerine species).

For many species, fecundity increases over a number of years
(Schwarz and Arnason, 2000), in contrast to the assumption in
Niel and Lebreton (2005) and Gaillard et al. (2005) that mature
age classes have constant fecundity. In fact, for 6 of the 13 species
used in Niel and Lebreton (2005), demographic data do not support
the constant-fecundity assumption (Table 1). A simple approach

Fig. 1. Mean generation times for black-legged kittiwake (BK), snow goose (SG),
barnacle goose (BG), great cormorant (GC), black-headed gull (BhG), and white stork
(WS). Values from matrix models (—) are compared to estimates from the naive (�)
and adjusted (�) constant-fecundity models, and to the varying-fecundity model
(�).

to approximating generation time when the constant-fecundity
assumption fails to hold is

ˆ̄T = ˆ̨ + s

� − s
(5)

with ˆ̨ = ˇ + ε, where ˇ is the first age class with non-zero fecun-
dity, and ε ≥ 0; this is the approach used by Niel and Lebreton
(2005).

One cause of varying fecundity for a population could be
increased breeding success with experience, while another could
be delayed-entry into the breeding population. For species with
delayed-entry into breeding, it is unclear what “age at first breed-
ing” means. In the population sense, it could be interpreted as the
age at which the first animals begin breeding, or as the “typical” age
that they begin breeding, perhaps described by the mean age at first
breeding (Schwarz and Arnason, 2000). Using the first interpreta-
tion could lead to the use of ˆ̨ = ˇ in Eq. (5) (the naive estimator).
This estimator can result in substantial bias in the estimation of
generation time; for the six species with varying fecundity, the
magnitude of the bias was greater than 1 year for two of the species
(Fig. 1).

A more realistic model – the varying-fecundity model – assumes
constant survival from the age that the first animals begin breeding
(ˇ), but allows fecundity to increase over a number of age classes,
becoming constant at some later age (�). If relative fecundities (the
ratio of each age-specific fecundity to fecundity at age �) are known,
Eq. (2) may be modified and an exact calculation of T̄ is still possi-
ble. As with the formula in Niel and Lebreton (2005) and Gaillard
et al. (2005), juvenile survival is not present in the calculation of

Table 1
Demographic parameters and matrix model estimates of the mean generation time (T̄) and annual growth rate (�) for six bird populations where fecundity increases over
several age classes (data from Niel and Lebreton, 2005).

Species ˇ � s kˇ , . . . , k�−1 T̄ �

Black-legged kittiwake Rissa tridactyla 5 6 0.90 0.90 9.177 1.120
Snow goose Anser caerulescens 2 4 0.83 0.41,0.91 5.014 1.167
Barnacle goose Branta leucopsis 3 4 0.95 0.50 7.498 1.184
Great cormorant Phalacracorax carbo 2 8 0.90 0.26, 0.47, 0.72, 0.91,0.97,0.99 6.283 1.185
Black-headed gull Larus ridibundus 2 3 0.90 0.43 6.291 1.138
White stork Ciconia ciconia 2 4 0.78 0.16,0.40 4.981 1.210
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