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a b s t r a c t

While statistical estimation of uncertainty has not typically accompanied published emergy values, as
with any other quantitative model, uncertainty is embedded in these values, and lack of uncertainty
characterization makes their accuracy not only opaque, it also prevents the use of emergy values in sta-
tistical tests of hypotheses. This paper first attempts to describe sources of uncertainty in unit emergy
values (UEVs) and presents a framework for estimating this uncertainty with analytical and stochastic
models, with model choices dependent upon on how the UEV is calculated and what kind of uncertainties
are quantified. The analytical model can incorporate a broader spectrum of uncertainty types than the
stochastic model, including model and scenario uncertainty, which may be significant in emergy mod-
els, but is only appropriate for the most basic of emergy calculations. Although less comprehensive in
its incorporation of uncertainty, the proposed stochastic method is suitable for all types of UEVs. The
distributions of unit emergy values approximate the lognormal distribution with variations depending
on the types of uncertainty quantified as well as the way the UEVs are calculated. While both methods
of estimating uncertainty in UEVs have their limitations in their presented stage of development, this
paper provides methods for incorporating uncertainty into emergy, and demonstrates how this can be
depicted and propagated so that it can be used in future emergy analyses and permit emergy to be more
readily incorporated into other methods of environmental assessment, such as LCA.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Emergy, a measure of energy used in making a product extend-
ing back to the work of nature in generating the raw resources used
(Odum, 1996), arises from general systems theory and has been
applied to ecosystems as well as to human-dominated systems to
address a scientific questions at many levels, from the understand-
ing ecosystem dynamics (Brown et al., 2006) to studies of modern
urban metabolism and sustainability (Zhang et al., 2009). Emergy,
or one any the many indicators derived from it (Brown and Ulgiati,
1997), is not an empirical property of an object, but an estimation
of embodied energy based on a relevant collection of empirical data
from the systems underlying an object, as well as rules and theoreti-
cal assumptions, and therefore cannot be directly measured. In the
process of emergy evaluation, especially due to its extensive and
ambitious scope, the emergy in a object is estimated in the pres-
ence of numerical uncertainty, which arises in all steps and from
all sources used in the evaluation process.

The proximate motivation for development of this model was for
use of emergy as an indicator within a life cycle assessment (LCA)
to provide information regarding the energy appropriated from the
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environment during the life cycle of a product. The advantages of
using emergy in an LCA framework are delineated and demon-
strated through an example of a gold mining (Ingwersen, under
review). The incorporation of uncertainty in LCA results is com-
monplace and furthermore prerequisite to using results to make
comparative assertions that are disclosed to the public (ISO 14044:
2006).

But the utility of uncertainty values for emergy is not only
restricted to emergy used along with other environmental assess-
ment methodologies; uncertainty characterization of emergy
values has been of increasing interest and in some cases begun to be
described by emergy practitioners (Bastianoni et al., 2009) for use
in traditional emergy evaluations. Herein lies the ultimate motiva-
tion for this manuscript, which is to provide an initial framework
for characterization of uncertainty of unit emergy values (UEVs),
or inventory unit-to-emergy conversions, which can be applied or
improved upon to characterize UEVs for any application, whether
they be original emergy calculations or drawn upon from previous
evaluations.

1.1. Sources of uncertainty in UEVs

Uncertainty in UEVs may exist on numerous levels. Classifica-
tion of uncertainty is helpful for identification of these sources of
uncertainty, and for formal description of uncertainty in a repli-
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Table 1
Elements of uncertainty in the UEV of lead in the ground.

Uncertainty type Definition Example Explanation

Parameter Uncertainty in a parameter used in the
model

Flux of continental crust = .0024 cm/year Global average number. A more recent
number is .003 cm/year (Scholl and von
Huene, 2004)

Model Uncertainty regarding which model
used to make estimations is
appropriate

See model for minerals in Table 2 Variation exists between this model
and others proposed for minerals

Scenario Uncertainty regarding the fit of model
parameters to a given geographical,
temporal, or technological context

Variation in enrichment ratio based on deposit type Assumption that the emergy in all
minerals of a given form is equal

cable fashion. The classification scheme defined by the US EPA
defines three uncertainty types: parameter, scenario, and model
uncertainty (Lloyd and Ries, 2007). This scheme is co-opted here to
represent the uncertainty types associated with UEVs. These uncer-
tainty types are defined in Table 1 using the example of the UEV for
lead in the ground.

There are additional elements of uncertainty in the adoption of
UEVs from previous analyses. These occur due to the following:

• Incorporation of UEVs from sources without documented meth-
ods.

• Errors in use of significant figures.
• Inclusion of UEVs with different inventory items (e.g. with or

without labor & services).
• Calculation errors in the evaluation.
• Conflicts in global baseline underlying UEVs, which may be prop-

agated unwittingly.
• Use of a UEV for an inappropriate product or process.

These bulleted errors are due to random calculation error,
human error, and methodological discrepancy, which is not well-
suited to formal characterization, and can be better addressed with
more transparent and uniform methodology and critical review.
But uncertainty and variability in parameters, models, and scenar-
ios can theoretically be quantified.

1.2. Models for describing uncertainty in lognormal distributions

Different components of uncertainty in a model must be com-
bined to estimate total uncertainty in the result. These component
uncertainties may originate from uncertainty in model parameters.
In multiple parameter models, such as emergy formula models,
each parameter has its own characteristic uncertainty. Uncertainty
in environmental variables is often assumed to be normal, although
Limpert et al. (2001) presents evidence that lognormal distributions
are more versatile in application and may be more appropriate for
parameters in many environmental disciplines. This distribution is
increasingly used to characterize data on process inputs used in
life cycle assessments (Huijbregts et al., 2003; Frischknecht et al.,
2007a,b).

A spread of lognormal variable can be described by a factor that
relates the median value to the tails of its distribution. Slob (1994)
defines this value as the dispersion factor, k, but it is also known as
the geometric variance, �2

geo:
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where �2
geo for variable a is a function of ωa (Eq. (1)),1 which a sim-

ple transformation of the coefficient of variation (Eq. (2)),2 where
�a is the sample standard deviation of variable a and �a is the sam-
ple mean. This can be applied to positive, normal variables with
certain advantages, because parameters for describing lognormal
distributions result in positive confidence intervals, and the lognor-
mal distribution approximates the normal distribution with low
dispersion factor values.

The geometric variance, �2
geo, (k ≈ �2

geo) is a symmetrical mea-
sure of the spread between the median, also known as the
geometric mean, �geo, and the tails of the 95.5% (henceforth 95%)
confidence interval (Eq. (3)).

CI95 = �geo(x÷)�2
geo (3)

The symbol ‘(x÷)’ represents ‘times or divided by’. The geometric
mean for variable a may be defined as in the following expression
(Eq. (4)):

�geo = �a√
ωa

(4)

The confidence interval describes the uncertainty surrounding
a lognormal variable, but not for a formula model that is a com-
bination of multiplication or division of each of these variables.
The uncertainty of each model parameter has to be propagated to
estimate a total parameter uncertainty. This can be done with Eq.
(5):
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where a, b . . .z are references to parameters of a multiplicative
model y of the form y = �a . . .z. Note that parameter uncertainties
are not simply summed together, which would overestimate uncer-
tainty. This solution (Eq. (5)) is valid under the assumption that each
model parameter is independent and lognormally distributed.

Describing the confidence interval requires the median, or geo-
metric mean, as well as the geometric variance. The geometric
mean of a model can be estimated first by estimating the model
CV (Eq. (6)) and then with a variation of Eq. (4) (Eq. (7)).3
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(7)

1 Eq. (1) adapted from Slob (1994).
2 Eqs. (2)–(4) adapted from Limpert et al. (2001).
3 Eqs. (5)–(7) adapted from Slob (1994).
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