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a b s t r a c t

A periodic steady state is a familiar phenomenon in many areas of theoretical biology and provides a
satisfying explanation for those animal communities in which populations are observed to oscillate in a
reproducible periodic manner. In this paper we explore models of three competing species described by
symmetric and asymmetric May–Leonard models, and specifically investigate criteria for the existence
of periodic steady states for an adapted May–Leonard model:

ẋ = r(1 − x − ˛y − ˇz)x
ẏ = (1 − ˇx − y − ˛z)y
ż = (1 − ˛x − ˇy − z)z.

Using the Routh–Hurwitz conditions, six inequalities that ensure the stability of the system are
identified. These inequalities are solved simultaneously, using numerical methods in order to gener-
ate three-dimensional phase portraits to illustrate the steady states. Then the “stability boundary” is
defined as the almost linear boundary between stability and instability. All the mathematics discussed
is suitable for advanced undergraduate mathematics or applied mathematics students, offering them
the opportunity to incorporate a computer algebra system such as Mathematica, DERIVE or Matlab in
their investigations. The adapted May–Leonard model provides a practical application of steady states,
stability and possible limit cycles of a nonlinear system.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In the biological sciences, stable periodic states or stable limit
cycles are constantly being sought, since they may provide a satisfy-
ing explanation for those animal communities in which populations
are observed to oscillate in a periodic manner (May, 1972). Stabil-
ity, in ecological terms, refers to an ability of a living system to
persist in spite of perturbation. Obviously this is a highly desirable
situation for any ecosystem where populations interact. If a valid
and adequate mathematical model is built to represent the dynam-
ics of a biological community, then the stability properties of the
real system can be deduced by investigating the model’s stability.
It is therefore useful to define conditions that will ensure stabil-
ity of the mathematical model, which will in turn indicate under
which conditions the ecological system will prove to be stable over
time.

The models developed can seldom be solved analytically;
therefore these models should be studied numerically or using
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qualitative methods. Furthermore, Van der Vaart (1976) warns that
although we have come a long way in developing mathematical
models to describe ecosystems dynamics, these models are still
deemed elementary, and should only be seen as an aid in decision
making processes.

In this paper we examine a generalization of the classical three
competing species model proposed by May and Leonard (1975)
and investigate for which parameter values the new model will
prove to have stable responses over time. We define the existence
of a boundary between stability and instability as an almost lin-
ear curve, where for certain parameter values lying underneath the
curve the system is stable, above the curve it is unstable and for val-
ues situated precisely on the curve a periodic steady state occurs.
By stability we mean bounded periodic oscillatory response over
time.

First a brief overview of the symmetric and asymmetric
May–Leonard models, as applied to a system of three competing
species, is given. A new adapted model of the classical May–Leonard
type is then proposed, and using computer-generated data, a con-
dition for the existence of families of periodic steady states are
identified. Mathematica (Wolfram, 1996) is used to graphically
demonstrate the periodic steady states found under these special
conditions.
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2. The symmetric May–Leonard model

In order to provide the basic principles for this paper, consider
the classic quadratic population model for three interacting species,
namely

ẋ = (a0 + a1x + a2y + a3z)x
ẏ = (b0 + b1x + b2y + b3z)y
ż = (c0 + c1x + c2y + c3z)z.

(1)

As usual, ẋ denotes the rate of change of population x, and like-
wise for ẏ and ż. Since this model has 12 parameters to deal with,
May and Leonard (1975) made it more manageable by reducing the
number of parameters in making the following assumptions:

(i) Let the population growth rates be a0 = b0 = c0 = r.
(ii) By rescaling t, it can be assumed that r = 1.

(iii) With respect to inter-species competition, population y affects
population x similarly as z affects y and as x affects z, so that
a2 = b3 = c1 = ˛.

(iv) Similarly let a3 = b1 = c2 = ˇ.
(v) By rescaling the populations, it can be assumed with respect to

intra-species competition, that a1 = b2 = c3 = 1

Consequently the May–Leonard model describing a system for
three competing species is given by:

ẋ = (1 − x − ˛y − ˇz)x
ẏ = (1 − ˇx − y − ˛z)y
ż = (1 − ˛x − ˇy − z)z.

(2)

with ˛ and ˇ positive.
May and Leonard (1975) note that “the values of the competition

coefficients ˛ and ˇ which lead to cycles, may be seen to correspond
to the biological circumstance where in purely pair-wise competi-
tion population x beats y, y beats z and z beats x. Such circumstances
are not plausible. It is this transitivity in the pair-wise competi-
tion which underlies the cyclic behaviour; the phenomenon clearly
requires at least three competitors, which is why it cannot occur in
models with two competitors.”

With eigenvalue analysis it can be shown that the only equilib-
rium point of this system is located at (1/(ˇ + ˛ + 1), (1/(ˇ + ˛ + 1),
(1/(ˇ + ˛ + 1)) Considering the variational matrix at this point, May
and Leonard (1975) prove that a necessary and sufficient condi-
tion to ensure stability would be if ˛ + ˇ < 2, and that consequently,
independent of initial conditions, a limit cycle will exist if ˛ + ˇ < 2.
Using randomly chosen initial conditions and assuming values of
˛ = 1.2 and ˇ = 0.8 so that ˛ + ˇ < 2 as an example, a number of sta-
ble limit cycles are observed in the phase plane of the May–Leonard
model, as illustrated in Fig. 1.

It may be noted that, according to the mathematical definition
of limit cycles, these are not truly limit cycles but rather periodic
steady states (PSS), since trajectories resulting from nearby initial
conditions do not spiral into the same periodic steady state, but
appear to be forming their own unique steady states. However,
stability of the mathematical system (and consequently of the eco-
logical system represented by the model) is clearly indicated by the
existence of the steady states.

3. The asymmetric May–Leonard model

In an interesting adaptation of the classical May–Leonard model,
Chi et al. (1998) investigate the effect on stability when vary-
ing the inter-species competition parameters. They analyze the
global asymptotic behaviour of what they call the asymmetric
May–Leonard model. Their rescaled system models the competi-
tion between three species, with the same intrinsic growth rate and
intra-species competition parameters but different inter-species

Fig. 1. For chosen values ˛ = 1.2 and ˇ = 0.8 and randomly chosen initial condi-
tions, limit cycles are graphically observed for the May–Leonard model for three
competing species.

competition coefficients. The asymmetric May–Leonard model
under these circumstances is

ẋ = (1 − x − ˛1y − ˇ1z)x
ẏ = (1 − ˇ2x − y − ˛2z)y
ż = (1 − ˛3x − ˇ3y − z)z

(3)

Under the assumptions Ai = 1 − ˛ and Bi = ˇi − 1 for i = 1, 2, 3,
Chi et al. (1998) prove the existence of neutrally stable periodic
solutions if B1B2B3 = A1A2A3, as graphically illustrated in Fig. 2.

The question now arises: what would be the effect on stabil-
ity when varying the growth and competition parameters of one
of the three species? An example illustrating such a situation is
given by Greeff and Fay (2008). They discuss a three species com-
petition model for nyala, impala and duiker in the Ndumo Game
Reserve, where the growth and inter- and intra-species compe-
tition parameters for nyala and impala are almost equal, but the
parameter values for duiker is much lower. Under what conditions

Fig. 2. As an example, stable periodic solutions for the asymmetric May–Leonard
model are illustrated when choosing random values of ˛1 = 0.2, ˛2 = 0.3
and ˛3 = 0.0857142, and ˇ1 = 1.7, ˇ2 = 1.5 and ˇ3 = 2.4628571, so that
B1B2B3 = A1A2A3 = 0.512.
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