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Two fundamental aspects of invasion dynamics are population growth and population spread. These
quantities have been subject of study in biological invasions and can be used to study management
and control of organisms. In this paper we derive formulae to calculate wave speed and rates of spread
for coupled map lattices. Coupled map lattice models are dynamical models where space and time are

discrete. We also show how wave speed and rate of spread can be calculated for structured population
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coupled map lattices in deterministic, stochastic environments and heterogeneous landscapes. Coupled
map lattices are simple mathematical models that can be easily linked to landscape data to study invading
organisms control strategies.
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1. Introduction

Two fundamental aspects of invasion dynamics are population
growth and population spread. The two related quantities (intrin-
sic growth rate and rate of spread) are essential to invasion theory.
They have been the subject of study in mathematical models for
invasions (Hastings et al., 2005), and the quantities are key con-
trol parameters in conservation management and biological control
(Fagan et al., 2002; Shea, 2004; Neubert and Parker, 2004; Allen
et al., 1996). Because of the long time and broad spatial scales at
which invasions occur, the use of models is essential to understand
the dynamics of invasions and design possible management and
conservation strategies.

There are several modelling strategies for population growth
and spatial spread: partial differential equations, integro-difference
equations, coupled map lattices, and cellular automata. Partial
differential equations incorporate continuous space and time,
integro-difference equations, discrete time and continuous space,
and coupled map lattice, discrete time and space. For cellu-
lar automata, in addition to time and space being discrete, the
state space is also discrete. Which modelling strategy is the
best depends upon the dynamical characteristics of the sys-
tem under analysis, and upon spatio-temporal scales. In the last
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two decades there has been an increase in the use of discrete
models due to their ability to incorporate stochastic compo-
nents and local inhomogeneities (Durrett and Levin, 1994), and
because personal computers now allow for fast numerical com-
putations.

Integro-difference equation (IDE) models are discrete-time and
continuous-space models, that incorporate dispersal data directly
using a kernel function (Kot et al., 1996). This dispersal kernel
allows for the redistribution of individuals in continuous space.
These models have been widely used to study spatial dynamics
and control of invasive species (e.g. Allen et al., 1996; Buckley et al.,
2005; Kot et al., 1996). Mathematically an IDE is defined as

o0

e (x) = / k(x,y)  fln(y)]dy. (1)
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Here n¢(x) is population density at time t location x and f[n:(y)]
describes population growth. The dispersal kernel k(x, y) is a proba-
bility density function describing the likelihood of dispersal to point
X.

Coupled map lattices (CMLs) are models where space and time
are discrete, and whose structure is similar to IDEs. Some CMLs
have been used to study host-parasitoid interactions (Hassell
et al,, 1991; Kean and Barlow, 2001; Bjornstad and Bascompte,
2001; Bonsall and Hassell, 2000), metapopulation level applications
(Janosi and Scheuring, 1997), applied biological control (Rees and
Paynter, 1997; Rees and Hill, 2001), and tree dispersal (Jiang and
Zhang, 2008). A coupled map lattice is a dynamical system where
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time and space are discrete, and the state variable is continuous
(White and White, 2005; Kaneko, 1992).

As with integro-difference equations, a CML describes the
growth and dispersal of the population, but now on a discrete
lattice. Strictly, a CML only involves local interactions, meaning
dispersal occurs in a local neighbourhood 2. However, there is
no restriction on how large §2 is. Consider the continuous spa-
tial domain X. A one-dimensional discrete regular lattice over X
is defined as X = {X_«, ..., X0, - .., X_oo}, With x; = ih, where h is
the cell size (scale) of the lattice and i is an integer. Mathematically
a CML can be defined,

()=
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k(x;, x;)

fIne(x;)1 (2)
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where x;, x; are points in a one-dimensional lattice, n¢(x;) is popu-
lation at time t location x;, f[n:(x;)] is a map that models population
growth and k(x;, x;) is a discrete probability mass function for dis-
persal. In a spatially homogeneous environment, dispersal kernels
that only depend on signed distance x4 = x; — X; are called differ-
ence kernels. As an example of a difference kernel k(x,), Xq = X; — X;,
consider,

(1-u) ifxg=0

k(xg)=<{ _ u , (3)
TR otherwise

where |§2| is the number of cells in the neighbourhood £2. Note
that ue[0, 1] and ng(xd) = 1. When |£2| = 3, this example is
considered a classic CML model with nearest neighbour interac-
tion. CMLs can be extended to a two-dimensional spatial lattice.
Here the nearest neighbour interactions, in a Moore neighbour-
hood, involve the central lattice point and eight neighbours so that
12| =9.

Some comparative studies show how results can be obtained
using CMLs are similar to those found with other modelling
structures like IDEs and individual-based models (White and
White, 2005; Brannstrom and Sumpter, 2005). As we will show
here, analytical tools developed for IDEs can be used directly
to study spread in discrete space for structured population
models.

In this paper we apply tools developed for calculation of wave
speed and spread rate in integro-difference equations to coupled
map lattices. To our knowledge, the application of these to CMLs is
new. We use CMLs to study the population dynamics and spread
of structured populations with applications to a particular invader,
scentless chamomile (Matricaria perforata), an introduced annual,
biennial or short-lived perennial plant that has become a widely
distributed weed in cultivated areas in North America (Hinz, 1996;
Hinz and McClay, 2000). We further analyze possible control strate-
gies, and explore CMLs in heterogeneous landscapes and stochastic
environments.

2. Discrete structured spatial models
2.1. Matrix coupled map lattice equations

Matrix population models have been shown to be an effective
tool to study population growth and control (Shea and Kelly, 1998;
van den Driessche and Watmough, 2002; Parker, 2000; McLeod and
Saunders, 2001). Space can be incorporated in the matrix model
formulation by extending a structured population across space, and
considering dispersal between these locations in a continuous or
discrete domain. Here we consider stage-structured models with
discrete space which we will call Matrix CML. For continuous space
stage-structured models see Neubert and Caswell (2000). A matrix
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Fig. 1. Life cycle graph of scentless chamomile. Node 1: seed bank, node 2: rosettes,
and node 3: flowering plants.

CML equation with stage structure is described by

e (x) = Y [R(, %) o Alne(x;). (4)

xjef2

Here A is the projection matrix, n:(x;) is a vector of stages at time
t location x; and K is a matrix of discrete kernels whose elements
kyn(x, y) are kernels that describe dispersal as the individual moves
from location y to x from stage m to stage . Each entry of K(x;, Xj) =

[Rim (X ;)] must satisfy:

lelm(xia X)=1, (5)

i=—o00

If difference kernels are assumed then K(x; — x;). The symbol “o”
denotes Hadamard product which is element-wise multiplication.
It is assumed that the m x m matrix A is non-negative and primi-
tive; hence there is a real and positive dominant eigenvalue A that
corresponds to the population growth rate. For detailed definition
and examples of matrix models (see Caswell, 2001).

As an example, consider the matrix model for scentless
chamomile (SC) from de Camino-Beck and Lewis (2007). Fig. 1
describes the scentless chamomile life cycle graph. The pro-
jection interval for this model is 1 year. Nodes 1, 2 and 3
correspond to seeds, rosettes and flowering plant stages. In the
life cycle, seeds can germinate and produce either rosettes (stage
without flowers) or flowering plants, or stay in the seed bank.
Rosettes can survive over winter producing a flowering plant
next year. The projection matrix of scentless chamomile is given
by

ap 0 a3
A=|ay 0 az|. (6)
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Since only seeds disperse (the third column of the matrix), the

dispersal matrix is given by difference kernels

. B Alx; — %)  Alx —x;) ’E(X,‘ - X;)

K(xi, %) =K(xi —x) = | Alxi—x) Alxi—%) kixi—x)|. (7)
Alxi = %) A —x;) k(x; —x;)

Here k(z), z = x — y is the dispersal kernel describing the dispersal
of seeds and the discrete delta function A(x; — x;), defined as

1, ifi=j
Alxi —x) = b = {O’ other]wise ’ (8)
is used for transitions where no dispersal occurs. As can be seen
from the third column of matrix K(z), seeds, produced by flowering
plants, disperse and can remain as seeds, germinate to rosettes, or
germinate to flowers in a single year.

A dispersal kernel can be defined using mechanistic principles,
or can be obtained directly from data without assuming any partic-
ular shape (Lewis et al., 2005). Consider the example when relative
frequencies of disperser f;, are collected in two directions and at
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