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a b s t r a c t

In this paper, the evolution of cooperation is studied by a spatially structured evolutionary game model
in which the players are located on a two-dimensional square lattice. Each player can choose one of the
following strategies: “always defect” (ALLD), “tit-for-tat” (TFT), and “always cooperate” (ALLC). Players
merely interact with four immediate neighbors at first and adjust strategies according to their rewards.
First, the evolutionary dynamics of the three strategies in non-spatial population is investigated, and
the results indicate that cooperation is not favored in most settings without spatial structure. Next, an
analytical method, which is based on comparing the local payoff structures, is introduced for the spatial
game model. Using the conditions derived from the method as criteria, the parameter plane for two major
parameters of the spatial game model is divided and nine representative regions are identified. In each
parameter region, a distinct spatiotemporal dynamics is characterized. The spatiotemporal dynamics not
only verify that the spatial structure promote the evolution of cooperation but also reveal how cooperation
is favored. Our results show that spatial structure is the keystone of the evolution of intraspecific diversity.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Cooperation, which is ubiquitous on many levels of biologi-
cal organization in nature, is essential for evolution to construct
new levels of biological organization (Doebeli and Hauert, 2005;
Nowak, 2006, and references therein). Genomes, cells, multicellu-
lar organisms, social insects, and human society are all based on
cooperation (Nowak, 2006). However, within the classic Darwinian
framework of evolutionary theory (the struggle for life and sur-
vival of the fittest), cooperation may be difficult to achieve under
the natural selection. Cooperators have to succeed in the struggle
for survival with defectors, who by definition have a certain fit-
ness advantage (Nowak and May, 1993). So the question of how
natural selection can lead to cooperation has fascinated evolution-
ary biologists for a long time. Maynard Smith and Price (1973)
ingeniously related the economic concept of players to biological
individuals and payoff function of a player to evolutionary fitness
that describes the survivability and fecundity of an individual. Their
seminal work thus signified the advent of an entirely new game the-
oretical approach to evolutionary ecology that evoked numerous
investigations successively (Doebeli and Hauert, 2005). In particu-
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lar, evolutionary game theory has been used as a standard tool in
understanding the evolution of cooperation (Maynard Smith, 1982;
Weibull, 1995; Hofbauer and Sigmund, 1998; Nowak and Sigmund,
2004; Nowak, 2006; Doebeli and Hauert, 2005). Over the past few
decades, several mechanisms have been proposed to explain the
problem of cooperation. Nowak (2006) reviewed the related stud-
ies and categorized these mechanisms as five rules: kin selection,
group selection, direct reciprocity, indirect reciprocity and network
reciprocity.

Since the pioneering work of Trivers (1971), direct reciprocity
was embedded into evolutionary game theory by Axelrod and
Hamilton (1981). Their models are based on the Prisoner’s Dilemma
(PD) game, perhaps the single most famous metaphor for the
problem of cooperation (Doebeli and Hauert, 2005 and references
therein). The original PD includes two players, each of which may
choose either to cooperate (C), or to defect (D) in any encounter. If
both players cooperate, they will be rewarded with R points. If they
both defect, they get the punishment P. If one player defects while
the other cooperates, the defector gets the temptation payoff T,
while the other gets the sucker’s payoff S. Now, with T > R > P > S
and 2R > T + S we have an obvious dilemma, in any round, the
strategy D is unbeatable no matter what the opponent does. The
original PD has four parameters, which can be reduced for the
purpose of analytical simplicity. Particularly, they can be reduced
as R = 1, T = b(1 < b < 2), S = 0, P = 0, where only one parame-
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ter b retains, and the parameter b characterizes the advantage of
defectors against cooperators (Nowak and May, 1992, 1993). This
parameter setting preserves the essentials of the PD, and is widely
accepted as its simplicity and generality.

The game theoretic framework of direct reciprocity is the
repeated Prisoner’s Dilemma game (repeated PD), which is one type
of solution to the dilemma. Repeated PD is based on the memories
of an individual who remembers opponents’ actions in previous
encounters and on the probability w > 0 of encountering simi-
lar actions again in the next round (Axelrod and Hamilton, 1981;
Axelrod, 1984; Axelrod and Dion, 1988; Nowak and Sigmund, 1992,
1993, 1994), thus cooperation may evolve in the context in which
future behavior may be determined by current payoff. The most
famous strategy of this type is “Tit-for-Tat” (TFT), the most basic
conditional strategy, which consists of cooperating in the first round
of the interaction, and taking the opponent’s strategy in the pre-
vious round. In Axelrod’s seminal computer tournaments (1984),
TFT was proven as the only successful strategy against a range of
other strategies, such as the two extreme unconditional strategies,
“always cooperate” (ALLC) and “always defect” (ALLD). However,
TFT does not always perform well when erroneous behaviors are
incorporated (Doebeli and Hauert, 2005). Needless to say, there
are a variety of modified versions of TFT strategies to improve
its robustness. But we will not want to mention all of them in
this study. It is believed that the interplay of the three most basic
strategies, ALLC, ALLD, and TFT captures an essential aspect of
the evolutionary dynamics of cooperation, and of our instinct for
direct reciprocation. At the same time, we have known that in well-
mixed populations, ALLC is dominated by ALLD, ALLD is bistable
with TFT if average number of rounds is sufficiently high, TFT
and ALLC are neutral if there is no noise (Nowak and Sigmund,
2004).

During the history of finding solutions to the dilemma, spatial
structure of the interacting populations is also another an abso-
lutely ineligible factor. In contrary to classical evolutionary game
model, spatially structured evolutionary game model can be inter-
preted as, individuals only play against their nearest neighbors but
not against random opponents (Brauchli et al., 1999). The biologi-
cal interpretation of spatial game model corresponds to the issue
of kin selection and more generally group selection (Frank, 1998;
Sober and Wilson, 1998). Axelrod (1984) had already pointed out
the potential role of spatial structure, but it was really the seminal
paper by Nowak and May (1992) that spawned a large number of
investigations of “games on grids” (Nowak and Sigmund, 2000), i.e.
evolutionary games that are played in populations having a spatial
structure, whose individuals located on a lattice only play locally
with their neighbors (sometimes include themselves) (Nowak and
May, 1992). Payoffs obtained are then used to update the lattice,
i.e. to create subsequent generations in the evolutionary process.
The propagation of successful strategies to neighboring sites may
be interpreted either in terms of reproduction, or in terms of imi-
tation and learning (Nowak and Sigmund, 2004). An ambiguous
conclusion that has been reached from studies of the different
types of the spatial PD is that spatial structure promotes cooper-
ation (Nowak and May, 1992, 1993; Huberman and Glance, 1993;
Nowak et al., 1994; Killingback et al., 1999). Nowak and May (1992)
have shown that a simplified spatial structure enables the mainte-
nance of cooperation for the simple PD, in contrast to the classical,
spatially unstructured PD where defection is always favored. And
they observed the perpetual coexistence of cooperative and defec-
tive players for a range of parameters, forming constantly changing
spatial patterns. An interesting combination of repeated games and
spatial structure, was studied by Lindgren and Nordahl (1994). Not
only did they find that in structured populations there is more
cooperation, but also that different strategies are successful in spa-
tially structured populations than in non-structured populations

Table 1
Payoff matrix of the three strategies ALLD, TFT and ALLC in repeated PD.

ALLD TFT ALLC

ALLD P/(1 − w) T + wP/(1 − w) T/(1 − w)
TFT S + wP/(1 − w) R/(1 − w) R/(1 − w)
ALLC S/(1 − w) R/(1 − w) R/(1 − w)

In the two players PD game, if both cooperate, they get a payoff of magnitude R, if
both defect they get P. If one player defects while the other cooperates, the defector
gets the payoff T, while cooperator gets S, w is the probability that the same two
players interact in the following step as well. In our study, the parameters are: R = 1,
T = b(1 < b < 2), S = 0, P = 0 (Nowak and May, 1992, 1993).

(Brauchli et al., 1999). Actually, there are plenty of spatial evolu-
tionary game models and we cannot list and review all of them. To
the best of our knowledge, the spatial effect on the evolutionary
game dynamics of the three strategies ALLD, TFT, and ALLC has not
been extensively investigated, and a systematic analysis about the
influences of parameters on the spatiotemporal dynamics is still
lack.

The aim of this study is to give a thorough analysis of the
spatiotemporal dynamics of the spatial evolutionary game, where
three types of players ALLD, TFT, and ALLC are included. The
ultimate goal is to answer the question, how spatial structure influ-
ences the evolution of cooperation and what impact it has on the
evolutionary dynamics of a spatially structured model. Before that,
we will first present the replicator dynamics of the three strate-
gies in completely well-mixed populations. The replicator equation
and mathematical analysis will be shown in Section 2. In Section 3,
the spatial evolutionary game model will be constructed, where
ALLD, TFT, and ALLC players are placed on a regular spatial lat-
tice. A systematic mathematical analysis for this model will be
given. Particularly, we will focus on two major parameters b and
w, then the plane of parameters b − w will be divided based on
comparing local occupation patterns, and the corresponding spa-
tiotemporal dynamics will be identified by computer simulations.
Lastly, the main results will be concluded, and a short discussion
will be given within the framework of Nowak’s five rules leading to
cooperation.

2. Replicator dynamics of non-spatial game models

Traditionally, evolutionary game model always assumes ran-
domly interacting populations, it does not include the effect of
spatial structure of populations. Replicator equation is introduced
as a corresponding mathematical tool to describe evolutionary
game dynamics in the deterministic limit of an infinitely large
and well-mixed population (Taylor and Jonker, 1978; Hofbauer et
al., 1979; Zeeman, 1980; Weibull, 1995; Hofbauer and Sigmund,
1998, 2003). Since w is the probability that the same two play-
ers interact in the following step as well, then wn−1(1 − w) will be
the probability that they interact exactly n times (n = 1, 2, 3 . . .).
The expected number of times that the two players interact is
1/(1 − w) (Nakamaru et al., 1997). The expected total payoff matrix
is shown in Table 1. For facility of comparison, we also assume
that parameters are R = 1, T = b(1 < b < 2), S = 0, P = 0 and set-
ting P = � with � positive but significantly below unity (so that
T > R > P > S is strictly satisfied) does not qualitatively change the
analytical results. In the following, the parameter setting keeps con-
stant except special declaration. Denoting {x1, x2, x3} (0 ≤ xi ≤ 1, i =
1, 2, 3) as the fractions of ALLD, TFT and ALLC, respectively, then the
replicator dynamics are restricted in the simplex x1 + x2 + x3 = 1.
Substituting the payoff matrix into the classical replicator equa-
tion (Taylor and Jonker, 1978; Hofbauer et al., 1979; Zeeman, 1980;
Weibull, 1995; Hofbauer and Sigmund, 1998, 2003), we get the
following dynamic system:
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