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We study the convergence of Solomonoff’s universal mixture on individual Martin-
Löf random sequences. A new result is presented extending the work of Hutter and 
Muchnik [3] by showing that there does not exist a universal mixture that converges on 
all Martin-Löf random sequences. We show that this is not an artifact of the fact that the 
universal mixture is not a proper measure and that the normalised universal mixture also 
fails to converge on all Martin-Löf random sequences.
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1. Introduction

Sequence prediction is the task of predicting symbol αn having seen α1:n−1 = α1 · · ·αn−1. Solomonoff approached this 
problem by taking a Bayesian mixture over all lower semicomputable semimeasures where complex semimeasures were 
assigned lower prior probability than simple ones.1 He then showed that, with probability one, the predictive mixture 
converges (fast) to the truth for any computable measure [9]. Solomonoff induction arguably solves the sequence prediction 
problem and has numerous attractive properties, both technical [9,2,5] and philosophical [8]. There is, however, some hidden 
unpleasantness, which we explore in this paper.

Martin-Löf randomness is the usual characterisation of the randomness of individual sequences [6]. A sequence is Martin-
Löf random if it passes all effective tests, such as the laws of large numbers and the iterated logarithm. Intuitively, a 
sequence is Martin-Löf random with respect to measure μ if it satisfies all the properties one would expect of an infinite 
sequence sampled from μ. It has previously been conjectured that the set of Martin-Löf random sequences is precisely, or 
contained within, the set on which the Bayesian mixture converges.

This question has seen a number of attempts with a partial negative solution and a more detailed history of the problem 
by Hutter and Muchnik [3]. They showed that there exists a universal lower semicomputable semimeasure M and Martin-Löf 
random sequence α (with respect to the Lebesgue measure λ) for which M(αn|α<n) �→ λ(αn|α<n). The α used in their 
proof is computable from the halting problem, which presumably inspired the work in [7] where it is shown that if α
is 2-random, then every universal lower semicomputable semimeasure converges on α. It is worth remarking that there 
exist semimeasures that do converge on all Martin-Löf random sequences, some of which are even lower semicomputable. 

* Principal corresponding author.
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1 Actually, Solomonoff mixed over proper measures. The use of semimeasures was introduced later by Levin to ensure that the mixture itself was lower 
semicomputable [14].

http://dx.doi.org/10.1016/j.tcs.2014.12.004
0304-3975/Crown Copyright © 2015 Published by Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2014.12.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:tor.lattimore@anu.edu.au
mailto:marcus.hutter@anu.edu.au
http://dx.doi.org/10.1016/j.tcs.2014.12.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2014.12.004&domain=pdf


T. Lattimore, M. Hutter / Theoretical Computer Science 588 (2015) 2–15 3

Unfortunately, however, they are not universal and may not enjoy the same fast convergence rates in expectation as universal 
measures do. For the construction and a detailed discussion, see [4, §5].

While Hutter and Muchnik showed that there exists a universal lower semicomputable semimeasure and Martin-Löf 
random sequence on which it fails to converge, the question of whether or not this failure occurs for all such semimeasures 
has remained open. We prove that for every universal lower semicomputable Bayesian mixture there exists a Martin-Löf 
random sequence on which it fails to converge. This result is interesting for a few reasons. The choice of universal mixture 
is akin to choosing an optimal universal Turing machine when computing Kolmogorov complexity. In both cases, asymptotic 
results are rarely dependent on this choice and so it is useful to confirm this trend here. On the other hand, if the result 
had been positive then the existence of a universal mixture that did converge on all Martin-Löf random strings would be a 
nice property that might justify the choice of one universal mixture over another.

The universal mixture is not a proper measure in the sense that the sum of conditional probabilities M(0|x) + M(1|x) < 1
for all x. For this reason it is common to use a normalised version Mnorm where normalisation is chosen to preserve the 
ratio Mnorm(x0)/Mnorm(x1) = M(x0)/M(x1). We show that the situation is not improved by normalisation and that Mnorm
also fails to converge to the Lebesgue measure on some Martin-Löf random sequences.

Our paper is structured as follows. We present the required notation and some basic results in algorithmic information 
theory (Section 2). We then present Solomonoff’s original theorem showing that the universal mixture converges to the 
truth with probability one (Section 3). The main theorems are then presented of which Theorem 6 is the most important 
stating for any universal mixture M that there exists a Martin-Löf random sequence α such that the predictive distribution 
M(αn|α<n) does not converge to 1

2 and actually is bounded away from 1
2 for a non-zero fraction of the time (Section 4). 

We then show that this is also true of the normalised version of the universal mixture (Section 5) and that there exists an 
infinite sequence that is not Martin-Löf random, but on which all universal mixtures converge to 1

2 (Section 6). We conclude 
in Section 7.

2. Notation

Overviews of algorithmic information theory can be found in [5,1]. A table of notation may be found in Appendix B.

General The natural, rational and real numbers are denoted by N, Q and R. Logarithms are taken with base 2. A real 
θ ∈ (0, 1) has entropy H(θ) := −θ log θ − (1 − θ) log(1 − θ). The indicator function is �expr�, which takes value 1 if expr is 
true and 0 otherwise. For sets A and B we write A − B for their difference and |A| for the size of A and Ac = N − A for 
the complement of A. The empty set is denoted by ∅. If A ⊆ N and n ∈ N, then A[n] := {a ∈ A : a ≤ n}. We use ∨ and ∧ for 
logical or/and respectively.

Natural density Let A ⊆ B ⊆N. Then the (upper) natural density of A ⊆ B are

d(A, B) := lim
n→∞

|A[n]|
|B[n]| d̄(A, B) := lim sup

n→∞
|A[n]|
|B[n]|

where the latter quantity is useful in the case when the former does not exist. If B = N, then we abbreviate d(A) ≡ d(A, N)

and d̄(A) ≡ d̄(A, N).

Strings A finite binary string x is a finite sequence x1x2x3 · · · xn with xi ∈ B := {0, 1}. Its length is �(x). An infinite binary 
string ω is an infinite sequence ω1ω2ω3 · · ·. The empty string of length zero is denoted by ε (distinct from ε > 0 ∈ R). The 
sets Bn , B∗ and B∞ are the sets of all strings of length n, all finite strings and all infinite strings respectively. Substrings 
of x ∈ B∗ ∪ B∞ are denoted by xs:t := xsxs+1 · · · xt−1xt where s, t ∈ N and s ≤ t . If s > t , then xs:t := ε . A useful shorthand 
is x<t := x1:t−1. Let x, y ∈ B∗ , then #x(y) is the number of (possibly overlapping and wrapping around) occurrences of x in 
y and xy is their concatenation. For example, #010(1010) = 2 (because we count the wrap around match when starting at 
the last bit). If �(y) ≥ �(x) and x1:�(x) = y1:�(x) , then we write x � y and say x is a prefix of y. Otherwise we write x �� y. 
A string ω ∈ B∞ is normal if ∀x ∈ B∗, limn→∞ #x(ω1:n)/n = 2−�(x) .

Measures and semimeasures A semimeasure is a function μ : B∗ → [0, 1] satisfying μ(ε) ≤ 1 and μ(x) ≥ μ(x0) + μ(x1) for 
all x ∈ B∗ . It is a measure if both inequalities are replaced by equalities. A function μ : B∗ → R is lower semicomputable if 
the set {(x, r) : r < μ(x), r ∈Q, x ∈ B∗} is recursively enumerable. In this case there exists a recursive sequence μ1, μ2, · · · of 
computable functions approximating μ from below. For b ∈ B and x ∈ B∗ , μ(b|x) := μ(xb)/μ(x) is the μ-probability that x
is followed by b. The Lebesgue measure is λ(x) := 2−�(x) .

Complexity A Turing machine T is a recursively enumerable set of pairs of binary strings T := {(p1, x1), (p2, x2), . . .} where 
the program pk outputs xk . It is a prefix machine if the set of programs is prefix free, pk �� p j for all j �= k. T is a monotone 
machine if pk � p j �⇒ xk � x j ∨ x j � xk . For prefix machine T the prefix complexity with respect to T is a function 
KT : B∗ → N defined by

KT (x) := min
p

{
�(p) : (p, x) ∈ T

}
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