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Thue proved that the factors occurring infinitely many times in square-free words over 
{0,1,2} avoiding the factors in {010,212} are the factors of the fixed point of the 
morphism 0 �→ 012, 1 �→ 02, 2 �→ 1. He similarly characterized square-free words 
avoiding {010,020} and {121,212} as the factors of two morphic words. In this paper, 
we exhibit smaller morphisms to define these two square-free morphic words and we give 
such characterizations for six types of binary words containing few distinct squares.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let �k denote the k-letter alphabet {0,1, . . . ,k− 1}. Let ε denote the empty word. A finite word is recurrent in an 
infinite word w if it appears as a factor of w infinitely many times. An infinite word w is recurrent if all its finite factors are 
recurrent in w . If a morphism f is such that f (0) starts with 0, then the fixed point of f is the unique word w = f ∞(0)

starting with 0 and satisfying w = f (w). An infinite word is pure morphic if it is the fixed point of a morphism. An infinite 
word is morphic if it is the image g( f ∞(0)) by a morphism g of a pure morphic word f ∞(0). The factor complexity of an 
infinite word or a language is the number of factors of length n of the infinite word or the language. A pattern P is a finite 
word of variables over the alphabet {A, B, . . .}. A word w (finite or infinite) avoids a pattern P if for every substitution φ of 
the variables of P with non-empty words, φ(P ) is not a factor of w . Given a finite alphabet �k , a finite set P of patterns, 
and a finite set F of factors over �k , we say that P ∪ F characterizes a morphic word w over �k if w avoids P ∪ F and 
every recurrent factor of an infinite word avoiding P ∪ F is a factor of w . In other words, P ∪ F characterizes w if and 
only if every recurrent word over �k avoiding P ∪ F has the same set of factors as w . In our results, we do not specify 
the alphabet size k since �k corresponds to the set of letters appearing in F . A repetition is a factor of the form r = un v
where u is non-empty and v is a prefix of u. Then |u| is the period of the repetition r and its exponent is |r|/|u|. A square
is a repetition of exponent 2. Equivalently, it is an occurrence of the pattern AA. An overlap is a repetition with exponent 
strictly greater than 2.

Thue [3,10,11] gave the following characterization of overlap-free binary words: {ABABA} ∪ {000,111} characterizes the 
fixed point of the morphism 0 �→ 01, 1 �→ 10. Concerning ternary square-free words, he proved that

• {AA} ∪ {010,212} characterizes the fixed point of f3: 0 �→ 012, 1 �→ 02, 2 �→ 1,
• {AA} ∪ {010,020} characterizes the morphic word T1( f ∞

T (0)),
• {AA} ∪ {121,212} characterizes the morphic word T2( f ∞

T (0)),
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Original form Standardized form Morphic word Section
{AA} ∪ {010,020} {AA} ∪ {010,020} M1( f ∞

5 (0)) 3.1
{AA} ∪ {121,212} {AA} ∪ {121,212} M2( f ∞

5 (0)) 3.1
(5/2,2,8) {SQ7} ∪ F8 g8( f ∞

5 (0)) 3.2
(7/3,2,12) {SQ9} ∪ F12 g12( f ∞

5 (0)) 3.3
(7/3,1,14) {SQ9} ∪ F14 g14( f ∞

5 (0)) 3.4
{AABBCC, SQ3} ∪ F ′

cs {SQ3} ∪ Fcs gcs( f ∞
5 (0)) 3.5

(5/2,1,11) {SQ5} ∪ F11 g11( f ∞
3 (0)) 4.1

(3,2,3) ∪ F ′
3 {SQ3} ∪ F3 g3( f ∞

3 (0)) 4.2
{AABBCABBA} ∪ {0011,1100} {SQ5} ∪ Fq gq( f ∞

3 (0)) 4.3

Fig. 1. Table of results.

where the morphisms f T , T1, and T2 are given below.

f T (0) = 012, T1(0) = 01210212, T2(0) = 021012,

f T (1) = 0432, T1(1) = 01210120212, T2(1) = 02102012,

f T (2) = 0134, T1(2) = 01210212021, T2(2) = 02101201,

f T (3) = 013432, T1(3) = 012102120210120212, T2(3) = 0210120102012,

f T (4) = 0434. T1(4) = 0121012021. T2(4) = 0210201.

To obtain the last two results, Thue first proved that f ∞
T (0) is characterized by {AA}∪{02,03,10,14,21,23,24,30,31,

41,42,040,132,404,1201,2012}.
In this paper, we prove such characterizations mostly for the binary words considered by the first author [1]. We also 

obtain smaller morphisms for Thue’s words avoiding {AA} ∪ {010,020} and {AA} ∪ {121,212} as well as a characterization 
for words avoiding the patterns AABBCC (i.e., three consecutive squares), ABCABC and a finite set of factors. The results are 
summarized in Fig. 1. The first column shows the description of the considered language given in the literature. It is either 
given by forbidden sets of patterns and factors, or by the notation (e, n, m), which means that we consider the binary words 
avoiding repetitions with exponent strictly greater than e, containing exactly n distinct repetitions with exponent e as a 
factor, and containing the minimum number m of distinct squares. We use the notation SQt for the pattern corresponding 
to squares with period at least t , that is, SQ1 = AA, SQ2 = ABAB, SQ3 = ABCABC, and so on. These languages actually have an 
equivalent definition with one forbidden pattern SQt and a finite set of forbidden factors. This standardized definition, given 
in the second column, is more suited for proving the characterization. The third column gives the corresponding morphic 
word. The fourth column indicates the section containing the corresponding set Fxx and morphism gxx .

To define a morphic word g( f ∞(0)), we allow that g is an erasing morphism, i.e., that the g-image of a letter is empty. 
Notice that replacing g by hc = g ◦ f c defines the same morphic word, and that hc is non-erasing for some small constant c.

The proofs are obtained by computer using the technique described in the next section. An example of proof by hand 
is given for Theorem 3. The morphic words in Fig. 1 are gathered according the pure morphic word they are built on. We 
introduce in Section 3 a pure morphic word f ∞

5 (0) similar to Thue’s word f ∞
T (0) and we characterize some of its morphic 

images. Section 4 is devoted to characterizations of some morphic images of Thue’s ternary pure morphic word f ∞
3 (0).

2. Characterizing a morphic word

A morphism f : �∗
k → �∗

k is primitive if there exists n ∈ N such that f n(a) contains b for every a, b ∈ �k . We are given 
a primitive morphism f : �∗

k → �∗
k , a morphism g : �∗

k → �∗
k′ , and a finite set of factors Fm ⊂ �∗

k′ . We want to prove that 
g( f ∞(0)) is characterized by {SQt} ∪Fm .

We assume that g( f ∞(0)) avoids {SQt} ∪ Fm . This can be checked using Cassaigne’s algorithm [5] that determines if a 
morphic word defined by circular morphisms avoids a given pattern with constants. We refer to Cassaigne [5] for the defi-
nitions of circular morphisms, synchronization point, and synchronization delay. We can use an online implementation [4]
of this algorithm. We also assume that the pure morphic word f ∞(0) is characterized by {AA} ∪ Fp for some finite set of 
factors Fp ⊂ �∗

k .
We compute the smallest integer c such that min

{|g( f c(a))|, a ∈ �k
}
� t . This c exists because f is primitive. We can 

consider the morphism g′ = g ◦ f c instead of g since we have g′( f ∞(0)) = g( f ∞(0)).
First, we check that g′ is circular. Then, we compute the set Sl of words v such that there exists a word pvs ∈ �∗

k′ avoid-
ing {SQt} ∪Fm , where l = max

{|u|, u ∈Fp
} × max

{|g′(a)|,a ∈ �k
}

, |v| = l, and |p| = |s| = 4l. To do this, we simply perform 
a depth-first exploration of the words of length 9l avoiding {SQt} ∪ Fm and for each of them, we put the central factor of 
length l in Sl . The running time of this brute-force approach is not so prohibitive precisely because the characterization 
implies a polynomial factor complexity. Finally, we check that every word in Sl is a factor of g′( f ∞(0)).

This implies that an infinite word over �k′ avoiding {SQt} ∪ Fm is the g′-image of an infinite word w ∈ �∗
k . Now w is 

square-free, since otherwise g′(w) would contain a square of period at least t . Also w does not contain a word y ∈ Fp , 
because g′(y) is a word of length at most l that is not a factor of any word in Sl . So w avoids {AA} ∪Fp , and thus has the 
same set of factors as f ∞(0). Thus, every infinite recurrent word over �k′ avoiding {SQt} ∪Fm has the same set of factors 
as g′( f ∞(0)).

The programs we used are available at http :/ /www.lirmm .fr /~ochem /morphisms /characterization .htm.

http://www.lirmm.fr/~ochem/morphisms/characterization.htm
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