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a b s t r a c t

The area under the curve (AUC) of the receiver operating characteristic (ROC) has become

a dominant tool in evaluating the accuracy of models predicting distributions of species.

ROC has the advantage of being threshold-independent, and as such does not require deci-

sions regarding thresholds of what constitutes a prediction of presence versus a prediction of

absence. However, we show that, comparing two ROCs, using the AUC systematically under-

values models that do not provide predictions across the entire spectrum of proportional

areas in the study area. Current ROC approaches in ecological niche modeling applica-

tions are also inappropriate because the two error components are weighted equally. We

recommend a modification of ROC that remedies these problems, using partial-area ROC

approaches to provide a firmer foundation for evaluation of predictions from ecological

niche models. A worked example demonstrates that models that are evaluated favorably by

traditional ROC AUCs are not necessarily the best when niche modeling considerations are

incorporated into the design of the test.

© 2007 Elsevier B.V. All rights reserved.

The tools and techniques of ecological niche modeling (ENM)
and the related ideas of species distribution modeling (SDM)
have seen an impressive increase in activity in recent years
(Guisan and Zimmermann, 2000; Soberón and Peterson, 2004;
Araújo and Guisan, 2006). Many facets of these tools and
their application have been examined in detailed analyses
(Stockwell and Peterson, 2002a,b, 2003; Anderson et al., 2003;
Pearson and Dawson, 2003; Araújo et al., 2005a,b; Guisan and
Thuiller, 2005; Guisan et al., 2006; Pearson et al., 2007) that have
greatly clarified the conditions of their use. However, in spite
of such attention, the issue of how to evaluate predictions of
these models statistically remains an area that is incompletely
and unsatisfactorily resolved (Fielding and Bell, 1997; Araújo
and Guisan, 2006; Guisan et al., 2006; Lobo et al., 2007).

In recent publications, statistical evaluations of niche and
distribution model predictions have generally been based on
receiver operating characteristic (ROC) analyses (DeLong et
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al., 1988), as exemplified by a recent, large-scale model com-
parison (Elith et al., 2006) and many similar studies. Spatial
predictions can present errors of omission (false negatives,
leaving out known distributional area) and errors of com-
mission (false positives, including unsuitable areas in the
prediction). ROC analysis involves plotting sensitivity (i.e.,
proportion of known presences predicted present, = 1 − false
negative rate) against 1 − specificity (i.e., proportion of known
absences predicted present, = false positive rate; Fig. 1). The
area under the ROC curve (AUC) is then compared against null
expectations [the area under the line linking the origin with
upper right corner of the graph (1,1), = 0.5] either probabilisti-
cally or via bootstrap manipulations.

Here, we point out two sources of problems in ROC analyses
that consistently favor certain kinds of algorithms over others.
The first limitation of ROCs derives from the fact that certain
algorithms span broad spectra of possible commission errors,
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whereas others are restricted to smaller ranges—we show that
ROCs consistently favor the former over the latter. The sec-
ond limitation derives from the very different meanings of
“absence” in the context of ENM versus SDM; as currently used,
ROC analyses do not distinguish between the two, and, again,
consistently favor model predictions oriented toward one type
of analysis (SDM) over the other (ENM). We present a modifica-
tion of the traditional ROC approach that takes steps towards
resolving these two problems.

1. The (simple part of the) problem:
unequal span of model predictions

A diverse set of inferential tools has been applied to the
challenge of estimating niches and predicting geographic dis-
tributions of species (Elith et al., 2006; Peterson, 2006), ranging
from simple range rules to complex neural networks, genetic
algorithms, maximum entropy, and multivariate regression
algorithms. The outputs from these different techniques have
different characteristics: most relevant here is that different
techniques may span very different ranges of predicted area
of presence of a species (e.g., range rules predict one or a few
thresholds, whereas multivariate regression approaches pro-
duce prediction across most of the spectrum of probabilities
from 0 to 1). These differences, however, have implications
for how AUC scores are calculated, because AUC calculations
assume that 1 − specificity spans the entire range [0,1], even
though model predictions may not span that whole range.
Special modifications to the approach are required for devel-
opment of AUC comparisons in partial ROCs that span only
a subset of the full spectrum of areal predictions (Jiang et al.,
1996; Dodd and Pepe, 2003).

ROC can be applied directly to evaluation of SDM predic-
tions (Fielding and Bell, 1997; Fawcett, 2003; Phillips et al.,
2006), although even this functionality is not above question
(Lobo et al., 2007). A SDM produces a prediction value related
(sometimes equal) to the probability that a species is present
in a cell. By assigning thresholds, the continuous scores can
be turned into binary predictions, which can be correct or
incorrect, producing a contingency table called the “confusion
matrix” (see Table 1). One confusion matrix exists per thresh-
old value, and the four elements of the matrix can be used to
calculate error characteristics.

In a conventional ROC, the proportion of true positives
[a/(a + c)], equivalent to the sensitivity (or absence of omis-

Table 1 – Schema of a confusion matrix, in which
predicted presences and absences are related to their
known status as observed presence or absence

Observed

Present Absent

Predicted
Present a b
Absent c d

See text for explanation.

sion error), is plotted against the proportion of false positives
[b/(b + d)], which in turn is equivalent to 1 − specificity or the
commission error. The plot in ROC space of sensitivity ver-
sus 1 − specificity displays how well an algorithm classifies
instances as the threshold changes. In SDM and ENM appli-
cations, threshold changes mean that the area predicted as
present also changes. Important sectors of this ROC space are
the origin (0,0), where the algorithm never falsely identifies
absences, but it fails to identify every known presence (which
is useless); the top right corner (1,1), where the algorithm
identifies every true presence correctly, but misidentifies all
absences as positives (also useless, although in a different
way). Finally, in the top left corner (0,1), the algorithm cor-
rectly identifies all true positives and never misclassifies a true
absence as a presence. Therefore, the regions in ROC space
near the (0,1) corner represent model predictions that success-
fully identify true presences and seldom misidentify absences
as presences.

Now consider the behavior of a random classifier. Such an
algorithm always randomly identifies as present a fixed pro-
portion p of any set of instances, a function of the proportional
area predicted present. This prediction rate is represented by
the straight line joining the points (0,0) and (1,1). A random
classificatory algorithm will select as present only a fraction
p of true presences, giving a value of p on the sensitivity axis
(y-axis). It will also select (wrongly) a fraction p of absences as
presences, giving the same value of p on the x-axis. Therefore,
as p varies, a line in which true presences = false presences is
traced (Fig. 1).

The above ideas can be applied directly to situations in
which true presences and true absences are known, such as
the typical SDM problem (Guisan and Zimmermann, 2000).
By varying the threshold at which the score of an algorithm
is regarded as a presence, a curve in ROC space is traced
(Fig. 1); elevation of this curve above the straight line of ran-
dom expectation is a measure of the discrimination capacity
of the algorithm (i.e., its capacity to classify correctly true pres-
ences and true absences) (Fielding and Bell, 1997; Guisan and
Zimmermann, 2000). In an ENM context, however, the situa-
tion is slightly different, but different in important ways (see
below).

In comparing the performance of different algorithms, in
either a SDM or ENM context, a problem exists that – to our
knowledge – has not been discussed previously in the litera-
ture on ENM or SDM: that some algorithms span the entire
range of possible commission errors, while others cover only
comparatively small regions of the overall ROC plot, either by
design or by the intrinsic operation of the algorithm. In other
words, while one algorithm may predict responses from 0 to
100% of false positives, another may predict only in the range
of, for example, 40–90% (illustrated in Fig. 2 for Maxent, which
predicts across the whole spectrum of areas, compared with
GARP, which predicts only at the broader end of the spectrum,
i.e., above ∼60%; details of methodologies for model genera-
tion are provided below in the worked example). Note that the
x-axis differs from that of a conventional ROC curve, an issue
that will be discussed in detail below.

In practice, the ROC AUC is calculated based on a series
of trapezoids (Fawcett, 2003), with the curve in essence “con-
necting the dots” in representing the different thresholds of
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