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a b s t r a c t

The Eastern Arc Mountains (EAMs) of Tanzania and Kenya support some of the most ancient

tropical rainforest on Earth. The forests are a global priority for biodiversity conservation

and provide vital resources to the Tanzanian population. Here, we make a first attempt to

predict the spatial distribution of 40 EAM tree species, using generalised additive models,

plot data and environmental predictor maps at sub 1 km resolution. The results of three

modelling experiments are presented, investigating predictions obtained by (1) two different

procedures for the stepwise selection of predictors, (2) down-weighting absence data, and (3)

incorporating an autocovariate term to describe fine-scale spatial aggregation. In response

to recent concerns regarding the extrapolation of model predictions beyond the restricted

environmental range of training data, we also demonstrate a novel graphical tool for quan-

tifying envelope uncertainty in restricted range niche-based models (envelope uncertainty

maps). We find that even for species with very few documented occurrences useful estimates

of distribution can be achieved. Initiating selection with a null model is found to be useful

for explanatory purposes, while beginning with a full predictor set can over-fit the data. We

show that a simple multimodel average of these two best-model predictions yields a supe-

rior compromise between generality and precision (parsimony). Down-weighting absences

shifts the balance of errors in favour of higher sensitivity, reducing the number of serious

mistakes (i.e., falsely predicted absences); however, response functions are more complex,

exacerbating uncertainty in larger models. Spatial autocovariates help describe fine-scale

patterns of occurrence and significantly improve explained deviance, though if important

environmental constraints are omitted then model stability and explanatory power can

be compromised. We conclude that the best modelling practice is contingent both on the

intentions of the analyst (explanation or prediction) and on the quality of distribution data;

generalised additive models have potential to provide valuable information for conservation

in the EAMs, but methods must be carefully considered, particularly if occurrence data are

scarce. Full results and details of all species models are supplied in an online Appendix.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Research into the habitat requirements of species plays a
fundamental role in planning for their future conservation,
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particularly if their persistence is threatened by external pres-
sures such as disturbance and climatic change. Vegetation
surveys provide point data for many taxa, but invariably survey
sites are too sparse or spatially biased for species distributions

0304-3800/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.ecolmodel.2008.06.028

mailto:pp509@york.ac.uk
dx.doi.org/10.1016/j.ecolmodel.2008.06.028


122 e c o l o g i c a l m o d e l l i n g 2 1 8 ( 2 0 0 8 ) 121–134

to be estimated directly (Küper et al., 2006). One solution
is to model the likelihood of occurrence as a function of
the local environment, using the available distribution data
and environmental variables as predictors of habitat suitabil-
ity. Species distribution models have been used previously
for biodiversity analysis (Austin, 1999; Ferrier et al., 2002a),
improved sampling of rare and endangered species (Engler
et al., 2004; Guisan et al., 2005), determination of reserve
boundaries (Ferrier et al., 2002b; Araújo et al., 2004), histor-
ical reconstruction (Richards et al., 2007) and assessment of
climate change impacts (Thomas et al., 2004; McClean et al.,
2005). All of these applications could prove extremely useful
for the Eastern Arc Mountains of Tanzania and Kenya (EAMs;
Lovett, 1985), one of the most important regions for conserva-
tion in the world (Stattersfield et al., 1998; Myers et al., 2000;
Olson and Dinerstein, 2002), yet to our knowledge no regional-
scale predictive model for tree distributions in this area has
been published.

The EAMs are a particularly challenging environment to
model, characterised by steep climatic gradients that must
be portrayed at a high spatial resolution if the environmental
tolerances of taxa are to be properly described. The study pre-
sented here uses generalised additive models (GAMs; Hastie
and Tibshirani, 1990) to parameterise the responses of 40 large
tree species to a number of climatic and topographic gradi-
ents. GAMs are a semi-parametric class of regression model,
chosen because of their ability to describe highly non-linear
response shapes (Yee and Mitchell, 1991; Austin, 2007). The
aim is to assess the potential of this data-driven tool for assist-
ing research and conservation in the EAMs—the application
of GAMs to small environmental datasets is increasingly com-
mon, but often due consideration is not given to pitfalls such
as over-fitting.

As is common for studies of this nature, the distribution
data available to us are not well suited to high-resolution
raster-based regression analysis. Impediments to model per-
formance may include mislocated or misidentified samples,
low sample size and prevalence, and a biased or restricted
distribution of occurrence data. In order to obtain robust esti-
mates of species distributions, and for the benefit of other
studies faced with similar challenges, we compare baseline
model predictions with those that incorporate down-weighted
absences (Maggini et al., 2006) and spatial autocovariates
(Augustin et al., 1996). Given that predictions can be highly
sensitive to the predictor sets used for modelling (e.g.,
Dormann et al., 2007a), we also calibrate and compare three
different methods for model selection: two best-model step-
wise procedures and one multimodel.

1.1. Model selection

The goal of selection is to construct as parsimonious a predic-
tor set as possible whilst retaining sufficient information to
predict the given distribution. A widely used procedure is to
select predictors in a stepwise manner, beginning with either a
null model (forward selection) or a full model (backward selec-
tion) and adding or removing predictors according to their
impact on a global measure of model performance (Eberhardt,
2003). Marginal statistics can be biased by the inevitable
collinearity amongst environmental predictors (Cohen et al.,

2003; Graham, 2003), and so the use of null hypothesis tests
during selection is best avoided. Issues of multiple testing
(Pearce and Ferrier, 2000a; Whittingham et al., 2006) and arbi-
trary levels of statistical significance (Mickey and Greenland,
1989; Rushton et al., 2004) further enforce this standpoint.
Multimodel inference has been proposed as an alternative to
best-model stepwise procedures. Anderson et al. (2000) for
instance describe an approach called information-theoretic
(IT; Akaike, 1973, 1974), in which a number of good models are
identified from an a priori set of hypotheses (predictor sets)
and then compared using Akaike Information Criterion (AIC;
Akaike, 1973), or combined in a model-average using Akaike
weights. Although not strictly adhering to the IT philosophy
of multimodel inference, many studies now adopt the use of
AIC in stepwise procedures.

1.2. Data bias

With absences often far outweighing presences, particularly
for rare and less well-known species, low sample prevalence
is a common problem that can lead to misleading evalua-
tions (Manel et al., 2001; Engler et al., 2004; McPherson et al.,
2004). A standardised prevalence can be achieved by apply-
ing weights to the absence data prior to parameterisation, as
demonstrated by Maggini et al. (2006) in their modelling of
Switzerland’s forest communities. The technique was shown
to perform well, improving both the accuracy and stability
of predictions. Maggini et al. found that the application of
weights increased the overall probabilities of occurrence, and
also report that the balance of model fit may have been altered.
It is the latter in which we see potential for improving our
predictions: absence ‘observations’ are inherently unreliable
(Anderson, 2003), and since misclassifications distort the mod-
elled relationship between species and environment it follows
that a strategic reduction in the dependence of models on
absence data could be beneficial. Simulations based on use-
availability data (resource selection function modelling; e.g.,
Johnson et al., 2006) suggest that logistic regression is rela-
tively robust to contamination rates of below 20%—a level that
could well be exceeded in our data.

Another source of error is the tendency for nearby locations
to be alike in terms of the communities they support, a trend
known as spatial autocorrelation (SAC). If a regression model
cannot fully explain the observed spatial clustering then its
residuals exhibit spatial structure, violating the assumption
that they should be independent and identically distributed.
There are two reasons why this kind of error is common in
niche models: first, predictors rarely contain sufficient infor-
mation to fully describe the observed aggregation (Guisan and
Thuiller, 2005), missing pieces of the puzzle include dispersal
patterns, competition/mutualism and disturbance; second,
ecologists are inclined to choose sample sites in more acces-
sible locations and areas of particular interest, yielding a
non-random distribution of sites that can confound SAC in
models. Over recent years the number of ecological studies to
address SAC in models has increased, with a majority report-
ing significant improvements in model fit (Dormann, 2007a).
Augustin et al. (1996) modelled deer populations using autol-
ogistic regression, a form of auto-model (Besag, 1974) that
has since been applied to a variety of species distribution
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