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a b s t r a c t

This paper is to show that most discrete models used for population dynamics in ecol-

ogy are inherently pathological that their predications cannot be independently verified by

experiments because they violate a fundamental principle of physics. The result is used

to tackle an on-going controversy regarding ecological chaos. Another implication of the

result is that all dynamical systems must be modeled by differential equations. As a result

it suggests that researches based on discrete modeling must be closely scrutinized and the

teaching of calculus and differential equations must be emphasized for students of biology.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

No models in ecology are better known than the Logistic
Map, or have played a greater role in the development of
the chaos theory (May, 1974; Hassel, 1975; Hassel et al., 1975;
Berryman and Millstein, 1989; Logan and Allen, 1992). Surpris-
ingly, however, there is not a greater controversy than what
was generated by the model’s prediction that one-species pop-
ulations are inherently chaotic.

The key prediction of the Logistic Map, xn+1 =
Q(xn, r):=rxn(1 − xn), says that increasing the intrinsic repro-
ductive rate r leads to chaotic oscillations in population.
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However, contradicting evidence existed even before the
chaos theory was popularized in ecology. One noticeable
example was given by McAllister and LeBrasseur (1971)
who showed that enriching an aquatic system led to stable
equilibrium. Ensuing extensive search for field chaos came
up empty-handed. For example, well-established geographic
patterns on microtine species (Hanski et al., 1991; Falck et al.,
1995) showed that ecological systems tend to stabilize down
the north-to-south latitude gradient, correlating well with
the ultimate resource abundance in liquid water and sunlight
towards the equator. A comprehensive hunt for ecological
chaos was down by Ellner and Turchin (1995) who used three
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different Lyapunove exponent estimators to analyze a large
collection of empirical data and showed rather conclusively
that ecological chaos is not to be expected in the wild.

The glaring irreconcilability between the theory and real-
ity can only lead to one logical conclusion: the theory is
wrong. Concluding it otherwise would have to imply that logic
imperatives do not apply to ecology. However, a definitive
explanation to the theory’s failure is lacking while efforts to
justify it continue (e.g. Eskola and Geritz, 2007). The purpose of
this paper is to make a case that the Logistic Map and most dis-
crete maps used in ecology and life sciences cannot be models
for any physical process, population dynamics in particular
because their predictions cannot be independently verified by
experiments.

2. The result

This conclusion rests on a fundamental principle of physics
held since the time of Copernicus in the 15th century that
a physical law should be the same anywhere and anytime
in the universe. In other words, a law must take the same
mathematical form, derivable from experiments carried out
at independently chosen times and spaces. As a result, the
mathematical formulation of a law must be endowed with
such time invariance property. Taken to be self-evident, we
state the principle in the following formulation more suited
for the issues under consideration:

Time Invariance Principle (TIP): A physical law has the same
mathematical form to every independent choice of obser-
vation time.

This principle has an important implication to dynamical
systems as laws of physical processes. To be precise, let y be
the set of state variables and p be the set of parameters of a
physical process. As a dynamical system, y changes in time
t. Suppose an observation is made at t0 and the state is y0,
where t0 is the time passage since the start of the process.
Another observation is made t > 0 time after t0 and the state
is yt. Then, as a physical law, yt is governed by a function,
denoted by yt = t (y0, t0, p), depending on the passage of time
t beyond t0, the state y0 at t0, and the system parameter p. As
a default requirement, it must satisfy the unitary condition

 0(y0, t0, p) = y0,

that is, with time increment 0, the law  0 leaves every state
fixed. Now by the Time Invariance Principle, if another obser-
vation is made s > 0 unit time later, the same functional form
(yt)s = s (yt, t + t0, p) must hold. Most importantly, the function
 t must satisfy the following group property and the unitary
condition

(yt)s =  s( t(y0, t0, p), t + t0, p) =  s+t(y0, t0, p) = ys+t,

and  0(y0, t0, p) = y0, (1)

which together is referred to being TIP-conforming. That is, if
an observation is made t time after the initial observation,
and another is made s time later, then the result must be the
same if only one observation is made s + t time after the initial
observation. More generally, the state at s + t after the state

y0 at t0 is the same state at s after an intermediate state yt

which is the state at t after the same initial y0 at t0. A violation
of this property that  s+t (y0, t0, p) �= s( t (y0, t0, p), t + t0, p)
implies that either such an “experiment” is not reproducible,
i.e., using independent observing times lead to irreconcilable
conclusions, or such a functional form  does not govern the
laws that the experiment is to establish or to verify.

A physical process is called autonomous if its dynamical law
 t (y0, t0, p) is independent of t0. In fact, every process can be
considered as autonomous by augmenting the state only one-
dimension higher. More specifically, let x = (y, �) and denote
x = (y0, �0) = (y0, t0), xt = (yt, �t) with

�t = t + �0 = t + t0,

Then the augmented state x is autonomous even if y is not.
More specifically, let

�t(x0, p) = ( t(y0, �0, p), t + �0),

then it is straightforward to check the following

Lemma 1. The functional form satisfies the TIP-conforming prop-
erty (1) if and only if the augmented functional form � satisfies the
autonomous TIP-conforming property

(xt)s = �s(xt, p) = �s(�t(x0, p), p) = �s+t(x0, p),

and �0(x0, p) = x0, (2)

Thus, from now on we will assume all TIP-conforming func-
tional forms are autonomous, and both properties (1) and
(2) are interchangeably referred to as the TIP-conforming group
property.

As a result, an immediate consequence to the Time Invari-
ance Principle is the following.

Lemma 2. If a TIP-conforming dynamical system �t(x, p) is con-
tinuously differentiable at t = 0 and any x in its domain of definition,
then x(t) =�t(x0, p) must be the unique solution to an initial value
problem of a differential equation:

dx(t)
dt

= F�(x(t), p), x(0) = x0,

where

F�(x, p) = ∂�h
∂h

(x, p)|h=0

is the generating vector field of �t. Conversely, if the vector field
F is continuous differentiable, then the solution to the initial value
problem satisfies the TIP-conforming group property (2).

Proof. Because � is differentiable and is TIP-conforming (2),
we have the following derivative

dx(t)
dt

= lim
h→0

�t+h(x0, p) − �t(x0, p)
h

= lim
h→0

�h(�t(x0, p), p) − �0(�t(x0, p), p)
h

= ∂�h
∂h

(�t(x0, p), p)|h=0 = F�(x(t), p),
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