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a b s t r a c t

Traditional occupancy–abundance and abundance–variance–occupancy models do not take into account
zero-inflation, which occurs when sampling rare species or in correlated counts arising from repeated
measures. In this paper we propose a novel approach extending occupancy–abundance relationships to
zero-inflated count data. This approach involves three steps: (1) selecting distributional assumptions and
parsimonious models for the count data, (2) estimating abundance, occupancy and variance parameters
as functions of site- and/or time-specific covariates, and (3) modelling the occupancy–abundance rela-
tionship using the parameters estimated in step 2. Five count datasets were used for comparing standard
Poisson and negative binomial distribution (NBD) occupancy–abundance models. Zero-inflated Poisson
(ZIP) and zero-inflated negative binomial (ZINB) occupancy–abundance models were introduced for the
first time, and these were compared with the Poisson, NBD, He and Gaston’s and Wilson and Room’s
abundance–variance–occupancy models. The percentage of zero counts ranged from 45 to 80% in the
datasets analysed. For most of the datasets, the ZINB occupancy–abundance model performed better
than the traditional Poisson, NBD and Wilson and Room’s model. He and Gaston’s model performed bet-
ter than the ZINB in two out of the five datasets. However, the occupancy predicted by all models increased
faster than the observed as density increased resulting in significant mismatch at the highest densities.
Limitations of the various models are discussed, and the need for careful choice of count distributions
and predictors in estimating abundance and occupancy parameter are indicated.

© 2009 Published by Elsevier B.V.

1. Introduction

A positive occupancy–abundance and abundance–variance
relationship has been widely documented, both intra- and inter-
specifically, at a range of spatial scales for a diverse array of animal
and plant species (Brown, 1984; Gaston et al., 2000, 2006; He et al.,
2002; Taylor, 1961). Since the first comprehensive treatment of the
occupancy–abundance relationship (Brown, 1984), it has become a
general mathematical expectation that the occupancy–abundance
relationship will always be positive, although occasional zero and
negative correlations have been reported (Gaston et al., 2000;
Wilson, 2008). This relationship has received particular attention
in the context of meta-population dynamics, conservation biology,
agricultural entomology and epidemiology (Anderson and May,
1985; Gaston et al., 2006; Wilson and Room, 1983).

A suite of empirical and theoretical models has been
widely employed to describe the occupancy–abundance rela-
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tionship in various fields (He and Gaston, 2003). However,
most are special forms of the negative binomial distribu-
tion (NBD) occupancy–abundance model (He and Gaston,
2003). Recently, He and Gaston (2003) derived a general
abundance–variance–occupancy model by combining the
abundance–variance relationship described by Taylor’s power
law (TPL) (Taylor, 1961) and the NBD occupancy–abundance
model. The abundance–variance–occupancy model arguably has
much wider ecological significance from the perspective of pattern
unification and, as such, it may help in fundamental understanding
of spatial variation in abundance (He and Gaston, 2003). However,
this model assumes perfect detection of species, and occupancy
and abundance to be temporally and spatially invariant (He and
Gaston, 2003). In their current form, all the occupancy–abundance
models also do not take into account zero-inflation and its impacts
on estimates of abundance, variance and occupancy from count
data. Therefore, there is a need to develop more robust models that
account for zero-inflation, which may arise from various sources.

A wide range of ecological count data exhibit zero-inflation
(Cunningham and Lindenmayer, 2005; Gray, 2005; Martin et al.,
2005; Sileshi, 2006, 2008; Warton, 2005), and such data do not
readily fit standard distributions such as the NBD (Hall, 2000). Two
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types of zeros are often encountered in count data: structural zeros
which are inevitable, and sampling zeros which occur by chance.
Structural zeros consist of a large number of true zeros which
arise when presence is not tenable (Cunningham and Lindenmayer,
2005). These are caused by the real ecological effects of interest
(Martin et al., 2005). For example, the study of rare organisms
will often lead to the collection of data with a high frequency of
zeros (Welsh et al., 1996). Within almost all communities the vast
majority of species are rare. Yet such species will frequently be of
ecological, conservation or management interest in part because
they may be among the extinction-prone taxa in an assemblage
(Cunningham and Lindenmayer, 2005). Sampling zeros are random,
and arise due to sampling where conditions are potentially suitable
but absence is observed. False zeros (MacKenzie et al., 2002) occur
when the species under study is present at the time of sampling,
but the observer does not detect it because of its cryptic or secretive
nature. Therefore, for rare species with low detection probability,
excess zeroes could be substantial.

In this paper we illustrate a novel method for modelling the
occupancy–abundance relationship for species with patchy dis-
tributions and, therefore, zero-inflated count datasets. We also
propose two new occupancy–abundance models based on the
zero-inflated Poisson (ZIP) and zero-inflated negative binomial
(ZINB) distributions. We then compare these models with the
traditional occupancy–abundance models derived from the Pois-
son and negative binomial distribution (NBD), and with two
abundance–variance–occupancy models derived from Taylor’s
power law. We illustrate the use of information criteria for model
selection, and discuss the limitations of the various models.

2. Methods

2.1. The data

Five count datasets with varying levels of zero-inflation were
used in this analysis. These datasets are by no means the most rep-
resentative of zero-inflated counts. They were only used to illustrate
the analytical methods proposed in Section 2.2. The first dataset
consisted of counts of adults of the chrysomelid beetle Mesoplatys
ochroptera Stål in western Kenya. This species was monitored in two
experiments established during 1999–2000 and 2000–2001, each
consisting of three agroforestry treatments consisting of pure Ses-
bania sesban (L.) Merrill, a mixture of S. sesban and Tephrosia vogelii
Hook and S. sesban and Crotalaria grahamiana Whight & Arn. The
sites were Dudi and Khumusalaba in Butere district, Mutumbu in
Siaya district, and Lela in Kisumu district of western Kenya (Sileshi
et al., 2006). In each treatment, the abundance of M. ochroptera
was monitored on 15 randomly selected trees that were tagged
using coloured plastic strings. The numbers of adults were recorded
monthly from July to December in 1999 and 2000 on each tree. This
constituted two years of data collected on six dates of sampling for
each site and treatment. On each date, samples were taken from
the same tree, and this constituted a repeated measures dataset. The
total sample size was 2546 S. sesban trees, of which 2035 (79.9%) had
zero counts of M. ochroptera. Years, dates, sites and treatments were
used as covariates to estimate abundance parameters in Section
2.2.1.

The second dataset consisted of counts of the invasive species
Heteropsylla cubana Craw per shoot of eight provenances of the
fodder tree Leucaena leucocephala (Lam) de Wit in Tanzania. To
assess psyllid abundance, three terminal shoots with the next three
open leaves were randomly cut from three randomly selected trees
per plot. Samples were bagged in polythene bags and taken to
the laboratory where the shoots were examined under a dissect-
ing microscope and the number of psyllid nymphs per shoot was

recorded. Data were recorded on six sampling dates. The total sam-
ple size was 861 shoots, of which 403 (46.8%) had zero counts.
Sampling dates and provenances were used as covariates to esti-
mate abundance parameters in Section 2.2.1.

The third dataset consisted of counts of the curculionid beetle
Diaecoderus sp. per maize plant in eastern Zambia. Beetles were
counted on 10 randomly selected maize plants in 13 agroforestry
treatments in February 2002 and 2003. The treatments were repli-
cated four times and arranged in a randomized complete blocks
design. The total sample size was 990 plants, of which 444 (44.9%)
were zero counts. Years and treatments were used as covariates for
estimation of abundance parameters in Section 2.2.1.

The fourth dataset consisted of counts of the tenebrionid Gono-
cephalum simplex (F.) in soil monoliths from agroforestry practices
in eastern Zambia. The study areas, treatment, experimental design
and management of the experiments have been described in detail
by Sileshi and Mafongoya (2007). Sampling was conducted three
times between December 2003 and July 2004. Soil samples were
collected using a soil monolith (25 cm × 25 cm and 25 cm depth)
placed over a randomly selected spot, and driven into the soil to
ground level using a metallic mallet. Adults were hand-sorted from
the soil and counts recorded per soil monolith. The total sample
size was 542 monoliths, of which 414 (76.4%) had zero counts. Sites
and treatments were used as covariates to estimate the abundance
parameters in Section 2.2.1.

The fifth dataset consisted of counts of the leaf beetle Ootheca
bennigseni Weis in eastern Zambia. Beetles were monitored on bean
and cowpea crops in experimental fields and two nearby farmers’
fields at Msekera in February 2003. Each farm was divided into
homogenous (2 m × 2 m) plots and beetle counts were recorded on
15 and 30 plants of each of bean and cowpea plants per plot in
farmers’ field and the experimental fields, respectively. The total
sample size was 420 plants, of which 240 (68.6%) had zero counts.
Fields and crops were used as covariates to estimate parameters of
abundance in Section 2.2.1.

2.2. The modelling approach

The shape and interpretation of occupancy–abundance and
abundance–variance–occupancy relationships are subject to the
sampling scale (He et al., 2002). In practice, these relationships are
established at some sampling scale using a range of sample mean
abundance (m), variance (s2) and occupancy (po). If the sample size
is sufficiently large, m, s2 and po are assumed to approach the true
abundance (�), variance (�2) and occupancy (pp), respectively. For
clarity, sample abundance is defined as the mean density of indi-
viduals in the sampling units (habitat patches) in which a species
was recorded, and the observed occupancy as the proportion of
occupied patches. When the sampling scale changes, values of m,
s2 and po will change, and this is likely to change the model that
best fits the observed data. The computation of m, po and s2 is some-
times done without due consideration for predictors (covariates) of
�, �2 and pp. If not done according to covariates that significantly
explain these parameters, they may be biased resulting in distor-
tion of the occupancy–abundance relationship. In this paper we
propose a three-step modelling approach that will account for zero-
inflation and improve accuracy in parameter estimation. The steps
include (1) selecting distributional assumptions and parsimonious
models for the count data, (2) estimating abundance, occupancy
and variance parameters as functions of site- and/or time-specific
covariates, and (3) modelling the occupancy–abundance relation-
ship using the parameters estimated in step 2.

2.2.1. Modelling abundance
The first two steps involved analysis of the datasets described

above assuming Poisson, NBD, ZIP and ZINB, and jointly estimating
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