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Most population models assume that individuals within a given population are identical,
that is, the fundamental role of variation is ignored. Here we develop a general approach
to modeling heterogeneous populations with discrete evolutionary time step. The theory is
applied to models of natural rotifer population dynamics. We show that under particular
conditions the behavior of the inhomogeneous model possesses complex transition regimes,
which depends both on the mean and the variance of the initial parameter distribution; the
final state of the population depends on the least possible value from the domain of the

parameter. The question of population persistence is discussed.
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1. Introduction

Due to ecological importance of zooplankton, a substantial
amount of data exists on the abundance of natural popula-
tions in lakes, estuaries and coastal marine environments. A
variety of mathematical models have been applied for model-
ing the dynamics of zooplankton populations (e.g., McCauley
et al.,, 1996; Snell and Serra, 1998). Recently a particular class
of mathematical models, extracted as deterministic dynamics
components from noisy ecological time series was stud-
ied systematically (Berezovskaya et al., 2005). These models,
which are discrete time maps by construction, were primarily
developed to analyze the dynamics of natural rotifer popu-
lations and evaluate the ecological consequences of toxicant
exposure.

Modeling population dynamics often involves balancing
the competing requirements of realism and simplicity. On
the side of simplicity, one has classical population models
with discrete time, which have been extensively studied for
decades (e.g., the pioneer works of Shapiro (1972) and May
(1975), among many others). It is a well-known fact that these
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models can possess various dynamical behaviors varying from
stable steady states and cycles to chaotic oscillations. These
models keep track of the total population size and treat all
individuals as identical. Thatis, the fundamental role of varia-
tionisignored, and parameter values represent some averaged
values while the information on variance and other charac-
teristics are not taken into account. This, of course, simplifies
the computation, albeit at the cost of realism. In recent years,
several researchers have focused on generalizing continuous
time population models in a way to allow for different individ-
uals or subpopulations to have different growth or mortality
rates (Karev, 2005, 2008; more abstract approach was devel-
oped earlier in works of Semenov, Okhonin, Gorban, see survey
of Gorban (2005) for details and references). It was shown that
recognition of heterogeneity may lead to unexpected and even
counter-intuitive effects. Here we present a general framework
to analyze the dynamics of inhomogeneous populations with
discrete time steps, and apply it to the study of dynamical
behavior of heterogeneous rotifer populations.

The paper is organized as follows. In Section 2 we sum-
marize main results from Berezovskaya et al. (2005), which
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include parametric portrait of the model for population
dynamics of rotifer populations, and discuss questions on
population persistence and extinction. In Section 3 we formu-
late general framework for analyzing heterogeneous models
with discrete time. In Section 4 we apply the theory of inho-
mogeneous maps to the model of rotifer population dynamics.
In particular, we show that the knowledge of mean values of
parameters is not sufficient for predicting the evolution and
eventual fate of the population. Moreover, the behavior of pop-
ulations with the same initial mean values of parameters and
different variances can differ dramatically: one of the popula-
tions can go extinct while other can reach a stable stationary
regime. Section 5 is devoted to discussion and conclusions.

2. The Consensus model

Methods developed to extract deterministic dynamics compo-
nents from short noisy time series (Aksakaya et al., 1999) were
applied to data from natural populations of nine rotifer species
(Snell and Serra, 1998). Time series of a population density
N; (a number of organisms per liter at time t with time unit
equals to 2 days) have been received. Using these series sev-
eral phenomenological models have been checked for fitting.
The best-fit model for 5 of 9 data sets (named the Consensus
model) has the following scaled form:

1y
N1 =N —a+— -2 1
t+1 tEXP{ a+ N; Ng} @]

where a>0 is the parameter characterizing density-
independent effects on the reproduction rate, which can
be interpreted as an environmental press to rotifers (poor
water quality, extreme temperature or toxicant exposure), and
y is the species-specific parameter. Berezovskaya et al. (2005)
showed that depending on parameter values the asymptotic
behavior of (1) can vary from equilibrium points to chaotic
oscillations with usual period-doubling route to chaos. More-
over, model (1) possesses the property of bistability (strong
Allee effect, e.g., Wang and Kot, 2001). This means that there
exists a threshold level of population size such that if the total

size of the population is less than this quantity the extinction
of the population is certain. The diversity of behaviors of
model (1) is associated with the complex form of the map.
The main results of the analysis of (1) are summarized in its
parametric portrait (Fig. 1a).

In Fig. 1a there are two domains (II and III) where persis-
tence of the population is possible, though it should be noted
that zero is a stable stationary point in these domains, i.e., if
the total size of the population is lower than some threshold
level, the extinction is certain. In domains I and IV any ini-
tial values of the population size lead to zero stable state, the
population cannot survive. Different possible ways of popu-
lation extinction if the parameters are varied were analyzed
(see Berezovskaya et al., 2005, for details). What is impor-
tant, model (1) has a density independent parameter a, which
can be also interpreted as an average ability of an individual
to reproduce under given toxicant exposure (compare with
the above interpretation). If the population is highly hetero-
geneous, i.e., there are some individuals that can stand and
reproduce under the conditions, and there are some for which
pollution is mortal, one has to adjust the model in such a way
to allow for different individuals have different reproduction
rates.

3. Inhomogeneous maps theory

Let us assume that a population consists of individuals, each
of those is characterized by its own parameter valuea=(a, .. .,
ag). These parameter values can take any particular value from
set A. Let nt(a) be the density of the population at the moment
t. Then the number of individuals having parameter values in
set A C Ais given by Nt = [} ni(a) da, and the total population
size is N; = fA ne(a) da.

If a model with discrete time steps is applicable to the pop-
ulation, then in the next time instant t+1, we should have
ne+1(a) = Wne(a), where W> 0 is the reproduction rate. In what
follows we assume that the reproduction rate depends on the
specific parameter value a, and the total size of the population,
ie.,, W=W(N¢, a). It means that we do not take into account
possible mutations. The population dynamics is hence gov-
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Fig. 1 - (a) Parametric portrait of model (1). The boundaries of the domains: y=0; (1) {y|y =1/(4a)}; (2) {yly =(a — 2)/(4(a — 1)?)};
(3) the boundary of the 0-attracting domain. The domains are I—total extinction; II—bistability; IIl—oscillations and chaos
and zero stable; IV—total extinction through aperiodic oscillations, zero stable (the 0-attracting domain). (b) Bifurcation
diagram of (1) for y=0.046. W(a) is the set of observed states of the population for the given parameter values.
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