
Theoretical Computer Science 583 (2015) 40–50

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Node replacement graph grammars with dynamic node

relabeling

Changwook Kim ∗, Mahiro Ando

School of Computer Science, University of Oklahoma, Norman, OK 73019, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 September 2013
Received in revised form 23 January 2015
Accepted 21 March 2015
Available online 1 April 2015
Communicated by Z. Esik

Keywords:
Formal languages
Graph grammars
Node replacement system
Dynamic node relabeling

The paper introduces node replacement graph grammars with dynamic node relabeling as
an extension of the eNCE families of graph grammars. Initiated by NLC grammars in which
graph embedding is based on node labels only, node distinction of the embedded graph
extended NLC grammars to NCE grammars and dynamic edge relabeling further extended
NCE grammars to eNCE grammars. Now, dynamic node relabeling, the node counterpart of
the dynamic edge relabeling, is introduced as the next extension, which we call neNCE.
The paper analyzes basic language-theoretical properties of the neNCE system.

Published by Elsevier B.V.

1. Introduction

Graph grammars are well-investigated systems that describe languages of node- and/or edge-labeled graphs using graph
rewriting. The node replacement system is one of the most successful models of graph grammars. The idea is simple: replace
a single node with a graph in one step and repeat it until a graph of interest is generated. The rules of replacement are
specified by a grammar’s productions.

Along this line of study, Janssens and Rozenberg [8] introduced the node-label-controlled (NLC) grammars, and various
extensions of this system have appeared in the literature. In the NLC grammars, the replacement of a graph is based only on
the label of the replaced node and new connections are established based on the node labels of the embedded graph and the
neighborhood of the replaced node. Janssens and Rozenberg [10] extended the NLC grammars to neighborhood-controlled
embedding (NCE) grammars, which allow to distinguish nodes in the embedded graph, regardless of the labels, in order to
establish connections. The eNLC and eNCE grammars (“e” for edge relabeling) [5,11], which involve dynamic edge relabeling,
are additional extensions of the NLC and NCE grammars, respectively. In the eNLC and eNCE grammars, edges are also
labeled and modified dynamically in each derivation step.

These graph grammars are powerful enough to describe PSPACE-complete languages, but do not describe all recursively
enumerable string languages (because their languages are in PSPACE) [5]. Our motivation of the present paper is to introduce
a new extension, called dynamic node relabeling, to give the Turing-complete power to the node replacement system.
We shall call this system neNCE, “n” for node relabeling. Known systems that can simulate Turing machines include the
handle NLC grammars of Main and Rozenberg [16], the edge-label controlled grammars of Main and Rozenberg [17], the
handle-rewriting hypergraph grammars of Courcelle et al. [2] and the HRNCE hypergraph grammars of Kim and Jeong [15].
In particular, the HRNCE system was extended from eNCE with the goal of generating hypergraphs using a simple rewriting

* Corresponding author.
E-mail address: dalmaji@gmail.com (C. Kim).

http://dx.doi.org/10.1016/j.tcs.2015.03.040
0304-3975/Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.tcs.2015.03.040
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:dalmaji@gmail.com
http://dx.doi.org/10.1016/j.tcs.2015.03.040
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.03.040&domain=pdf

C. Kim, M. Ando / Theoretical Computer Science 583 (2015) 40–50 41

mechanism and of achieving the Turing-complete power. We believe that the neNCE system introduced in the present paper
is the first node replacement system in the literature that possesses the Turing-complete description power.

Not only the extensions but also reasonable restrictions of the NLC grammars have been studied in the literature. For
instance, in boundary NLC (B-NLC) grammars of Rozenberg and Welzl [18], any two nodes with nonterminal labels are
not allowed to be adjacent. Linear NLC (Lin-NLC) grammars of Engelfriet and Leih [3] are even more restricted systems, in
which any sentential form may contain at most one nonterminal node. These restrictions can be applied to the NCE, eNLC
and eNCE grammars as well and a complete hierarchical relation among these systems was given in [12]. The main feature
of such restrictions is that they are confluent (or context-free) [1], i.e., the order of applying production rules in a derivation
has no influence on the resulting graph, and this implies easier handling of such systems. For example, the class B-eNCE is
in NP [5]. We shall define similar confluent subsystems of the neNCE system, such as 3-separated and linear grammars, and
analyze their basic properties. For example, it will be shown that the 3-separated neNCE grammars have the same power
as the 3-separated eNCE grammars (thus, the power of dynamic node relabeling is subsumed by the power of dynamic
edge relabeling in this case) and they have useful normal forms such as Chomsky and Greibach normal forms. Hierarchical
relations among the neNCE families of graph languages will also be presented.

The paper is organized as follows. Section 2 contains basic definitions and notations. Section 3 defines the neNCE system
and its subsystem nNCE (that utilizes dynamic node relabeling but not dynamic edge relabeling) and proves that nNCE
grammars can describe all recursively enumerable string languages. Section 4 defines a few basic confluent neNCE sub-
systems and proves hierarchical relations (equivalence, proper inclusion and incompatibility) among the neNCE families
of graph languages. Section 5 proves that confluent subsystems of the neNCE system defined in the present paper have
Chomsky and Greibach normal forms, similar to the B-eNCE and Lin-eNCE cases.

2. Preliminaries

This section contains basic notations and definitions which will be needed in this paper. The mathematical notations
discussed in this section follow general usage found in the context of formal language theory and graph theory.

For a set A, its cardinality is denoted by |A|, and its power set, or the set of all its subsets, is denoted by 2A . The empty
set is denoted by ∅. An alphabet is a finite set of symbols.

Let � and � be alphabets (of node and edge labels). A graph over � and � is a system H = (V , E, φ), where V is a finite
set of nodes, E is a finite set of edges of the form ({u, v}, λ), where u, v ∈ V , u �= v and λ ∈ �, and φ : V → � is a node
labeling function. An edge ({u, v}, λ) will be simply denoted by (u, λ, v) or (v, λ, u) and the set {λ | (u, λ, v) is an edge in H}
is denoted by ψH (u, v). The three components of H are written as V H , E H and φH , respectively. As a special case, if |�| = 1
then H is called a graph over �. (Intuitively, a graph over � does not have edge labels.) The empty graph, which has no node
and no edge, is denoted by �.

Let H be a graph over � and �. Then two nodes u, v ∈ V H are adjacent if (u, λ, v) is an edge for some λ; u is called
incident to this edge, and vice versa. The set of all nodes adjacent to the node u in H is denoted by adjH (u). The context set
of a node u in H , denoted by contextH (u), is the set {(ψH (u, v), φH (v)) | v ∈ adjH (u)}.

A sequence p = (v1, v2, . . . , vr), r ≥ 2, of distinct nodes in V H is a path between v1 and vr if vi and vi+1 are adjacent
for all i ∈ {1,2, . . . , r − 1}. If p is a path, r ≥ 3, and v1 and vr are adjacent, then (v1, v2, . . . , vr, v1) is a cycle. H is connected
if there is a path between each pair of its nodes. H is a tree if it is a connected graph without any cycle. H is a chain if it
is a tree which is in fact a path.

Let H1 and H2 be graphs over � and �. Then H1 and H2 are isomorphic if there is a bijection h : V H1 → V H2 such that
for all u ∈ V H1 , φH1(u) = φH2(h(u)) and (u, λ, v) ∈ E H1 for any v ∈ V H1 and any λ ∈ � if and only if (h(u), λ, h(v)) ∈ E H2 .
H2 is an isomorphic copy (or simply copy) of H1 if H1 and H2 are isomorphic.

The set of all graphs over � and � is denoted by GR�,� and that over � is denoted by GR� . Any subset of GR�,� or
GR� is called a graph language.

For a string w = a1a2 · · ·an of length n, the oriented chain of w , denoted by o-chain(w), is an edge-unlabeled chain with
n + 1 nodes labeled sequentially by a1, a2, . . . , an, $, where $ is a special symbol to identify the orientation. For a string
language L, its equivalent graph language is o-chain(L) = {o-chain(w) | w ∈ L}.

3. Dynamic node relabeling

This section introduces our new graph grammar system neNCE, that extends eNCE, and its subclass nNCE corresponding
to NCE. We shall then prove that these grammars can generate all recursively enumerable string languages, by simulating
an arbitrary Turing machine on chains.

Definition 3.1. An neNCE grammar is a system G = (�, �, 	, �,
, P, Z), where

(1) � is an alphabet of node labels,
(2) � (⊆ �) is the set of terminal node labels (the elements in � − � are nonterminal node labels),
(3) 	 (⊆ �) is the set of final node labels (the elements in � − 	 are nonfinal node labels),
(4) � is an alphabet of edge labels,

Download	English	Version:

https://daneshyari.com/en/article/437839

Download	Persian	Version:

https://daneshyari.com/article/437839

Daneshyari.com

https://daneshyari.com/en/article/437839
https://daneshyari.com/article/437839
https://daneshyari.com/

