
Theoretical Computer Science 583 (2015) 86–97

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Exploiting non-constant safe memory in resilient algorithms

and data structures

Lorenzo De Stefani, Francesco Silvestri ∗

Dipartimento di Ingegneria dell’Informazione, Università di Padova, Via Gradenigo 6/B, I-35131 Padova, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 May 2013
Received in revised form 29 October 2014
Accepted 2 April 2015
Available online 8 April 2015
Communicated by G.F. Italiano

Keywords:
Resilient algorithm
Resilient data structure
Memory errors
Sorting
Priority queue
Tradeoffs
Fault tolerance

We extend the Faulty RAM model by Finocchi and Italiano (2008) by adding a safe memory
of arbitrary size S , and we then derive tradeoffs between the performance of resilient
algorithmic techniques and the size of the safe memory. Let δ and α denote, respectively,
the maximum amount of faults which can happen during the execution of an algorithm
and the actual number of occurred faults, with α ≤ δ. We propose a resilient algorithm
for sorting n entries which requires O (n log n + α(δ/S + log S)) time and uses � (S) safe
memory words. Our algorithm outperforms previous resilient sorting algorithms which
do not exploit the available safe memory and require O (n log n + αδ) time. Finally, we
exploit our sorting algorithm for deriving a resilient priority queue. Our implementation
uses � (S) safe memory words and � (n) faulty memory words for storing n keys, and
requires O (logn + δ/S) amortized time for each insert and deletemin operation. Our
resilient priority queue improves the O (logn + δ) amortized time required by the state
of the art.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Memories of modern computational platforms are not completely reliable since a variety of causes, including cosmic
radiations and alpha particles [1], may lead to a transient failure of a memory unit and to the loss or corruption of its
content. Memory errors are usually silent and hence an application may successfully terminate even if the final output is
irreversibly corrupted. This fact has been recognized in many systems, like in Sun Microsystems servers at major customer
sites [1] and in Google’s server fleets [2]. Eventually, a few works have also shown that memory faults can cause serious
security vulnerabilities (see, e.g., [3]).

As hardware solutions, like Error Correcting Codes (ECC), are costly and reduce space and time performance, a number
of algorithms and data structures have been proposed that provide (almost) correct solutions even when silent memory
errors occur. Algorithmic approaches for dealing with unreliable information have been widely targeted in literature under
different settings, and we refer to [4] for a survey. In particular, a number of algorithms and data structures, which are
called resilient, have been designed in the Faulty RAM (FRAM) model [5]. In this model, an adaptive adversary can corrupt
up to δ memory cells of a large unreliable memory at any time (even simultaneously) during the execution of an algorithm.
Resilient algorithmic techniques have been designed for many problems, including sorting [6], selection [7], dynamic pro-

* Corresponding author. Tel.: +39 049 8277954.
E-mail addresses: destefan@dei.unipd.it (L. De Stefani), silvest1@dei.unipd.it (F. Silvestri).

http://dx.doi.org/10.1016/j.tcs.2015.04.003
0304-3975/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2015.04.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:destefan@dei.unipd.it
mailto:silvest1@dei.unipd.it
http://dx.doi.org/10.1016/j.tcs.2015.04.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.04.003&domain=pdf

L. De Stefani, F. Silvestri / Theoretical Computer Science 583 (2015) 86–97 87

gramming [8], dictionaries [9], priority queues [10], matrix multiplication and FFT [11], K-d and suffix trees [12,13]. Resilient
algorithms have also been experimentally evaluated [14,11,15,16].

1.1. Our results

Previous results in the FRAM model assume the existence of a safe memory of constant size which cannot be corrupted
by the adversary and which is used for storing crucial data such as code and instruction counters. In this paper we follow
up the preliminary investigation in [8] studying to which extent the size of the safe memory can affect the performance
of resilient algorithms and data structures. We enrich the FRAM model with a safe memory of arbitrary size S and then
give evidence that an increased safe memory can be exploited to notably improve the performance of resilient algorithms.
In addition to its theoretical interest, the adoption of such a model is supported by recent research on hybrid systems
that integrate algorithmic resiliency with the (limited) amount of memory protected by hardware ECC [17]. In this setting,
S would denote the memory that is protected by the hardware.

Let δ and α denote respectively the maximum amount of faults which can happen during the execution of an algorithm
and the actual number of occurred faults, with α ≤ δ. In Section 2, we show that n entries can be resiliently sorted in
O (n log n + α(δ/S + log S)) time when a safe memory of size � (S) is available in the FRAM. As a consequence, our algo-

rithm runs in optimal � (n log n) time for δ = O
(√

nS log n
)

and S ≤ n/ log n. When S = ω(1), our algorithm outperforms
previous resilient sorting algorithms, which do not exploit non-constant safe memory and require O (n log n + αδ) time [6,7].
Finally, we use the proposed resilient sorting algorithm for deriving a resilient priority queue in Section 3. Our implemen-
tation uses � (S) safe memory words and � (n) faulty memory words for storing n keys, and requires O (log n + δ/S)

amortized time for each insert and deletemin operation. This result improves the state of art for which O (log n + δ) amor-
tized time is required for each operation [10].

1.2. Preliminaries

As already mentioned, we use the FRAM model with a safe memory. Specifically, the adopted model features two mem-
ories: the faulty memory whose size is potentially unbounded, and the safe memory of size S . For the sake of simplicity,
we allow algorithms to exceed the amount of safe memory by a multiplicative constant factor. The adversary can read the
content of the faulty memory and corrupt at any time memory words stored in any position of the faulty memory for up to
a total δ times. Note that faults can occur simultaneously and the adversary is allowed to corrupt a value which was already
previously altered. The safe memory can be read but not corrupted by the adversary. A similar model was adopted in [8],
however in this paper the adversary was not allowed to read the safe memory. We denote with α ≤ δ the actual number
of faults injected by the adversary during the execution of the algorithm. Since the performance of our algorithms do not
increase as soon as S > δ, we assume through the paper that S ≤ δ; this assumption can be easily removed by replacing S
with min{S, δ} in our algorithms.

A variable is reliably written if it is replicated 2δ + 1 times in the faulty memory and its actual value is determined
by majority: clearly, a reliably written variable cannot be corrupted. We say that a value is faithful if it has never been
corrupted and that a sequence is faithfully ordered if all the faithful values in it are correctly ordered. Finally, we assume all
faithful input values to be distinct, each value to require a memory word, and that each sequence or buffer to be stored in
adjacent memory words.

2. Resilient sorting algorithm

In the resilient sorting problem we are given a set of n keys and the goal is to correctly order all the faithful in-
put keys (corrupted keys can be arbitrarily positioned). We propose S-Sort, a resilient sorting algorithm which runs in
O (n log n + α (δ/S + log S)) time by exploiting � (S) safe memory words. Our approach builds on the resilient sorting
algorithm in [6], however major changes are required to fully exploit the safe memory. In particular, the proposed algo-
rithm forces the adversary to inject � (S) faults in order to invalidate part of the computation and to increase the running
time by an additive O (δ + S log S) term. In contrast, O (1) faults suffice to increase by an additive O (δ) term the time of
previous algorithms [5–7], even when ω(1) safe memory is available. Our algorithm runs in optimal � (n log n) time for
δ = O

(√
Sn log n

)
and S ≤ n/ log n: this represents a �

(√
S
)

improvement with respect to the state of the art [6], where

optimality is reached for δ = O
(√

n log n
)

.

S-Sort is based on mergesort and uses the resilient algorithm S-Merge for merging. The S-Merge algorithm requires
O (n + α (δ/S + log S)) time for merging two faithfully ordered sequences of length n each with � (S) safe memory. S-Merge
is structured as follows. An incomplete merge of the two input sequences is initially computed with S-PurifyingMerge: this
method returns a faithfully ordered sequence Z of length at least 2(n − α) that contains a partial merge of the input
sequences, and a sequence F with the at most 2α remaining keys that the algorithm has failed to insert into Z . Finally,
keys in F are inserted into Z using the S-BucketSort algorithm, obtaining the final faithfully ordered sequence of all input
values. Procedures S-PurifyingMerge and S-BucketSort are respectively proposed in Sections 2.1 and 2.2, while Section 2.3
describes the resilient algorithms S-Merge and S-Sort.

Download English Version:

https://daneshyari.com/en/article/437844

Download Persian Version:

https://daneshyari.com/article/437844

Daneshyari.com

https://daneshyari.com/en/article/437844
https://daneshyari.com/article/437844
https://daneshyari.com

