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a b s t r a c t

Model calibration is fundamental in applications of deterministic process-based models.

Uncertainty in model predictions depends much on the input data and observations avail-

able for model calibration. Here we explored how model predictions (forecasts) and their

uncertainties vary with the length of time series data used in calibration. As an example

we used the hydrogeochemical model MAGIC and data from Birkenes, a small catchment

in southern Norway, to simulate future water chemistry under a scenario of reduced acid

deposition. A Bayesian approach with a Markov Chain Monte Carlo (MCMC) technique was

used to calibrate the model to different lengths of observed data (4–29 years) and to estimate

the prediction uncertainty each calibration. The results show that the difference between

modelled and observed water chemistry (calibration goodness of fit) in general decreases

with increasing length of the time series used in calibration. However, there are consider-

able differences for different time series of the same length. The results also show that the

uncertainties in predicted future acid neutralizing capacity were lowest (i.e. the distribu-

tion peak narrowest) when using the longest time series for calibration. As for calibration

success, there were considerable differences between the future distributions (prediction

uncertainty) for the different calibrations.

© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Deterministic simulation models are often used to mimic
hydrological, hydrogeochemical or other complex environ-
mental systems and to make predictions under different
scenarios. Such models produce certain output parameters as
a function of a group of input parameters.

There are several sources of uncertainty in predictions from
such models (Funtowicz and Ravetz, 1990; Saloranta et al.,
2003). One important source of uncertainty is related to the
quality, quantity and representativity of input data and obser-
vations used in calibration. Uncertainty of this origin is often
considered (by the modellers, at least) to be the largest con-
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tributor to the overall uncertainty (Blöschl and Grayson, 2000;
Uhlenbrook and Sieber, 2005). Another type of uncertainty is
related to the model structure and the extent to which the
model properly describes the system to be modelled. Models
are by necessity simplified descriptions of the natural system,
and the challenge when selecting or building a model is to
include the important drivers for the problem to be inves-
tigated, but yet not over parameterize (Perrin et al., 2001;
Snowling and Kramer, 2001). The uncertainties related to input
data and model structure are closely related in model applica-
tions. Additional uncertainty, usually impossible to quantify,
is of an epistemological nature, such as sudden dramatic
changes in the system, or system processes not included in
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the model (for example wildfires, landslides, volcanic erup-
tions) (Funtowicz and Ravetz, 1990). The focus in this paper
is the prediction uncertainty related to the length of the time
series data available for model calibration.

Calibration of input parameters through fitting the cor-
responding output parameters to observational data is
fundamental in dynamic, process-oriented models used for
prediction. Model predictions depend strongly on model cal-
ibration, and calibration depends on available observational
data. Some recent studies discuss the relationship between
uncertainty in predictions and length of calibration data time
series in hydrological modelling (Anctil et al., 2004; Brath et
al., 2004; Xia et al., 2004). Much less work has been done on
uncertainty assessment and time series data with hydrogeo-
chemical models, although it has been demonstrated that
increasing numbers of observational data at different points
in time will significantly reduce uncertainties in predictions
(Larssen et al., 2004).

A principal approach to quantifying uncertainty in model
predictions is to give some sort of probability distribution to
the input parameters to the deterministic model and thereby
obtain probability distributions rather than single values as
model outputs. Several approaches have been developed for
uncertainty assessment in which Bayesian techniques are
combined with conceptual hydrological catchment models
(Bates et al., 2003; Kuczera and Parent, 1998; Makowski et al.,
2002; Thiemann et al., 2001). For biogeochemical or hydrogeo-
chemical models as well as other types of integrated water
resources modelling, such approaches are less developed, but
are now becoming increasingly available (Larssen et al., 2006).

The hydrogeochemical case study presented in this paper
is recovery from acidification in response to reduced acid
deposition. The case is particularly suitable for illustrating
the variation in uncertainty with the observation data time
series because long-term (30+ year) monitoring data exist, and
widely tested and well-documented models are available. Data
from the Birkenes catchment in southern Norway are used.
The deterministic model is the widely used hydrogeochemi-
cal model MAGIC (Model for Acidification of Groundwater in
Catchments) (Cosby et al., 1985, 2001). MAGIC is mostly used
for predicting future development in water chemistry as a
result of changing inputs of sulphur and nitrogen from the
atmosphere (acid rain). Here we present predictions of future
water chemistry based on model calibrations made with dif-
ferent time series of model calibration data.

The objectives are to illustrate how (1) the calibration suc-
cess and (2) the uncertainties in model predictions may vary
with different lengths of time series data used for model cal-
ibration. In order to utilize the information in the time series
observations, we combine the deterministic model (MAGIC)
with a stochastic model for the observed output data and esti-
mate all unknown parameters by Bayesian computations. We
used a Markov Chain Monte Carlo (MCMC) technique for cali-
brating the MAGIC model to different sub-sets of the Birkenes
stream chemistry data. We then compare (1) the agreement
between simulated and observed data for each calibration
and (2) the probability distributions of predicted future water
chemistry under a future deposition scenario for each calibra-
tion. Different sub-sets of 4–5 years length and 11 years length
as well as the full 29-year series were used for calibration to

examine the effects of different time series of observations on
calibration success and uncertainty in predictions.

2. Material and methods

2.1. The MAGIC model and the calibration routine

The MAGIC model is used to predict long-term effects of acid
deposition on soils and surface water chemistry (Cosby et al.,
1985, 2001). The model has been extensively used at a range of
different sites and applications (see appendix in Cosby et al.,
2001).

The predictions are largely driven by atmospheric depo-
sition of the major ions sulphate (SO4

2−), nitrate (NO3
−),

chloride (Cl−), ammonium (NH4
+), calcium (Ca2+), magne-

sium (Mg2+), sodium (Na+), potassium (K+) and hydrogen (H+).
MAGIC calculates for each year the concentrations of ions
in soil solution and surface water under the assumption of
simultaneous reactions involving sulphate adsorption, cation
exchange, dissolution–precipitation–speciation of aluminium,
and dissolution–speciation of inorganic and organic carbon.
MAGIC accounts for the mass balance of major ions in the soil
by book-keeping the fluxes from atmospheric inputs, chemi-
cal weathering, net uptake in biomass, and loss to runoff. A
model run is initialized in pre-industrial times (1850 is used
in the current application) and driven forward in time by
changing input of ions from deposition. During calibration,
the model is run from the initial year to the period in time for
which observations are available for surface water chemistry
and soil chemistry. In traditional calibrations of MAGIC, where
the input parameter uncertainty is not estimated, two sets of
input parameters are adjusted to produce a match between
simulated and observed soil and water variables:

• The weathering rate of the four base cations Ca2+, Mg2+,
Na+, and K+, the sum of which is the total soil base cation
weathering (BCw).

• The relative amounts of the individual exchangeable base
cations Ca2+, Mg2+, Na+, and K+ in the soil, the sum of which
is the total initial soil base cation saturation (BS0). The sub-
script refers to the year the model is initiated, i.e. 1850.

Calibration is then done by adjusting BCw and BS0 until
output parameters match observed data for water chemistry
and soil base saturation in the calibration year or years.

In the traditional calibration of the MAGIC model, the val-
ues for all input parameters, except BCw and BS0, are treated
as known. In the Bayesian approach, however, all input param-
eters and output parameters are technically interpreted as
unknown, ideal or effective values which are representative
of the whole catchment and a whole year. They are to some
degree measurable, but cannot be specified exactly in practice,
since the corresponding measurements (input data and out-
put data) typically will be point measurements in space and
often also in time.

The input parameters required for calibration of MAGIC
comprise 28 parameters assumed independent of time,
including lake and catchment characteristics and soil chem-
ical and physical characteristics (see Table 1 for a detailed
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