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a b s t r a c t

Wildlife populations typically are described by Markovian models, with population dynam-

ics influenced at each point in time by current but not previous population levels. Con-

siderable work has been done on identifying optimal management strategies under the

Markovian assumption. In this paper we generalize this work to non-Markovian systems,

for which population responses to management are influenced by lagged as well as current

status and/or controls. We use the maximum principle of optimal control theory to derive

conditions for the optimal management such a system, and illustrate the effects of lags on

the structure of optimal habitat strategies for a predator–prey system.

Published by Elsevier B.V.

Substantial progress has been made in recent decades in
the general area of informed natural resource management.
Approaches to optimal decision making have been described
and adopted in the management of various natural resources
(reviewed by Williams, 1982, 1989; Williams et al., 2002). Such
approaches include the ability to deal with sequential deci-
sions for dynamical systems and even to incorporate in the
optimization the reduction of uncertainty over time (e.g.,
Walters, 1986; Williams, 1996a,b; Williams and Nichols, 2001;
Williams et al., 2002). Perhaps the most prominent use of these
approaches in real world management involves the adap-
tive harvest management program for North American duck
populations implemented in 1995 (Johnson et al., 1993, 1997;
Nichols et al., 1995; Williams and Johnson, 1995; Williams et
al., 1996).

Virtually all of the development for optimal decision pro-
cesses in natural resources to date has involved the man-
agement of systems that can be characterized as first order
Markov processes. For such processes, changes in system state
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between two times, t and t + 1, depend only on system state at
time t. However, for many biological systems it is difficult or
impossible to adequately represent system dynamics without
incorporating time lags. Hutchinson (1948) first considered the
incorporation of a time lag in the Verhulst–Pearl logistic equa-
tion, such that the rate of change in population size at time t,
dN/dt, is determined by population size at some previous time,
N(t−�), where � denotes the time lag. He noted that introduction
of a lag induces oscillations, with system stability determined
by the magnitude of the lag (Hutchinson, 1948). Leslie (1959)
considered discrete time models in which age-specific survival
and reproductive rates depended not only on abundance at the
current time, but also on abundance at previous times. Leslie
(1959) focused on the case in which abundance at the current
time and at the time of birth of each age class (reflecting so-
called cohort effects) were the relevant variables, and noted
that lags of this form produced damped oscillations. In some
species, probability of reproducing in year t is a function not
only of conditions in year t, but also of whether or not the
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animal reproduced successfully the previous year (e.g., some
sea turtles, Richardson et al., 1999; some albatross species,
Weimerskirch et al., 1987; some whales, Fujiwara and Caswell,
2001). This biological lag can be modeled via the introduction
of time lags or by definitions of state that incorporate past
performance.

Wangersky and Cunningham (1957a,b) considered time
lags in the response of predators to prey and in the responses
of competitors to each other. Caswell (1972) reviewed pre-
vious analytic efforts to explore consequences of time lags
and provided additional insights using simulation. May (1973)
introduced time lags into models with two and three trophic
levels, including vegetation–herbivore–carnivore systems.

In addition to the prevalence of time lags in models of sys-
tem dynamics, the influences of management actions also
may involve time lags. Various forms of habitat management,
for example, are likely to be influenced by successional pro-
cesses. These include forest management (e.g., Conroy and
Moore, 2001) and use of fire as a management tool (e.g.,
Richards et al., 1999). In such instances, the state of popula-
tions of interest is influenced by the number of years elapsed,
�, since the last management action. There are multiple ways
to model such time dependence, including the incorporation
of time lags in animal population models and the simultane-
ous modeling of habitat state as a first order Markov process
(e.g., Richards et al., 1999). Williams et al. (2002) discussed
population dynamics of some familiar population models that
incorporate lags in their transition equations.

Notwithstanding these efforts, there remains a need to be
able to account more explicitly for previous biological states
or previous management actions, especially as concerns man-
aged biological systems. Our objective in this paper is to frame
the issue of lagged effects in terms of optimal decision mak-
ing, and to describe optimal strategies for lagged biological
systems.

To that end, consider a biological population that is sub-
jected to management over time, with time-specific actions
based on current biological status and the projected effects
of management on future status. For notational simplicity,
biological status is characterized here by x(t), representing ele-
ments such as cohort size, population status, or other indices
of a natural resource system. Management action at time t is
designated by a(t), with policy {a(t)} designating a sequence
of actions over the time frame. Biological responses to actions
typically are depicted by

x(t + 1) = x(t) + f (x(t), a(t), t)

over the discrete time frame {t0, t0 + 1, . . ., T}, and by

ẋ = f (x(t), a(t), t)

over the continuous time frame [t0, T]. Not represented in
these equations are environmental conditions and other fac-
tors that typically combine with biological status and man-
agement actions to influence biological change. The effects of
these factors are implied by the argument t in the state trans-
fer function.

A key feature of system dynamics as described above is
that they are assumed to be Markovian, in that the change
in system state depends on the current state but not on pre-

vious states. This assumption has important implications for
both understanding and management of biological systems.
In what follows we extend these models so as to accommo-
date non-Markovian state dynamics, according to

x(t + 1) = x(t) + f (x(t), x(t − �), a(t), a(t − �), t)

and

ẋ = f (x(t), x(t − �), a(t), a(t − �), t).

In particular, we describe non-Markovian systems that include
lags in the effects of system states, or management actions,
or both.

1. Optimal control of Markovian
populations

Irrespective of the occurrence of lags, benefits and costs atten-
dant to management action can be captured in a function
U(a(t), x(t)) describing the utility of action a(t) when the popu-
lation is of size x(t). In discrete time the value associated with
the control trajectory {a(t)} is expressed in an objective func-
tional

J =
T∑

t=t0

U(a(t), x(t)) + F1(x(T))

that includes accumulated utilities over the time frame and a
terminal value function F1(x(T)) that assigns value to the ter-
minal system state x(T). Thus, the optimal control problem for
a Markovian system starting in state x0 at time t0 is

maximize
{a(t)} ∈ A

T∑
t=t0

U(a(t), x(t)) + F1(x(T))

subject to

x(t + 1) = x(t) + f (x, a, t) x(0) = x0.

Here A represents admissible policies over t ∈ {t0, t0 + 1, . . . , T}.
In continuous time the problem is

maximize
{a(t)} ∈ A

T∫
t0

U(a(t), x(t))dt + F1(x(T))t

subject to

ẋ = f (x, a, t) x(0) = x0,

where the time index t can assume any value in the time frame
[t0, T].

In words, we seek a control trajectory {a(t)} that maximizes
the objective functional, conditional on system dynamics and
relevant system and control constraints. In this formulation,
the transition equations act as equality constraints, along with
the initial conditions and other operating conditions. For the
remainder of this paper we focus on continuous-time prob-
lems, recognizing that an analogous argument can be fash-
ioned for discrete-time systems. Unless needed for clarifica-
tion, the time index for state variables and controls will be
suppressed for notational convenience.
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