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The k-Clique problem is a fundamental combinatorial problem that plays a prominent role 
in classical as well as in parameterized complexity theory. It is among the most well-
known NP-complete and W[1]-complete problems. Moreover, its average-case complexity 
analysis has created a long thread of research already since the 1970s. Here, we continue 
this line of research by studying the dependence of the average-case complexity of the
k-Clique problem on the parameter k. To this end, we define two natural parameterized 
analogs of efficient average-case algorithms. We then show that k-Clique admits both 
analogues for Erdős–Rényi random graphs of arbitrary density. We also show that k-Clique

is unlikely to admit either of these analogs for some specific computable input distribution.
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The k-Clique problem is one of the most fundamental combinatorial problems in graph theory and computer science. 
This problem asks to determine whether a given graph contains a clique of size k, i.e. a complete subgraph on k vertices. 
The k-Clique problem forms the groundwork for many worst-case hardness frameworks: It is one of Karp’s famous initial 
lists of NP-complete problems [11], and its optimization variant is a classical example of a problem that is NP-hard to 
approximate within a factor of n1−ε for any ε > 0 [20]. In parameterized complexity theory [4], the k-Clique problem is 
textbook example complete for the class W[1], the parameterized analogue of NP, playing a prominent role in W[1]-hardness 
results very much akin to the role 3-SAT plays in the classical complexity.

In this paper we are interested in the parameterized complexity of the k-Clique problem on “average” inputs. For our 
purposes, an average k-Clique instance can be naturally and conveniently modeled using the thoroughly-studied Erdős–
Rényi distributions on graphs. The class of these distributions is typically denoted by G(n, p), with n ∈ N and p ∈ [0, 1], 
where on a graph with n vertices each pair of vertices are adjacent independently with probability p. Such random graphs 
have approximate density p, and it is well-known (see e.g. [1,10]) that the typical properties of these random graphs are es-
sentially the typical properties of a random graph that is uniformly selected among all graphs on n vertices and p

(n
2

)
edges.

The question of finding cliques in G(n, p) random graphs has been raised by Karp [12] already in 1976. Karp observed 
that in G(n, 1/2) (note that this is in fact the uniform distribution over all graphs on n vertices) the maximum size of 
a clique is about 2 log n with high probability, but the greedy algorithm only finds with high probability a clique that is 
approximately half this size. Karp asked whether in fact there is any polynomial-time algorithm that finds a clique of size 
(1 + ε) log n, for some ε > 0. This question remains open until today.
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Finding cliques in G(n, p) random has also been considered when the clique sought after have small size, which is the 
main theme of our paper. For a fixed integer k ≥ 3, the random graph G(n, p) undergoes a phase transition regarding the 
(almost sure) existence of cliques of size k (cf. [1] or [10]) as the edge probability p grows. More specifically, it is known that 
when p � n−2/(k−1) , then G(n, p) does not contain any cliques of size k, with high probability, but when p � n−2/(k−1) , then 
in fact there are many k-cliques with high probability. However, inside the “critical window”, that is when p = �(n−2/(k−1)), 
the maximum size of a clique could be either k − 1 or k each one occurring with probability that is bounded away from 0 
as n grows to infinity. More precisely, the number of cliques of size k follows asymptotically a Poisson distribution with 
parameter that depends on k. In this range, the greedy algorithm finds a clique of size � k

2 � or 	 k
2 
, with high probability. 

Rossman [17, Remark 35] remarks that repeating the greedy algorithm nk/4+O (1) times, we can enumerate all the maximal 
cliques with high probability. This gives a randomized algorithm with runtime nk/4+O (1) for solving k-Clique with high 
probability.

Since the above algorithm is the fastest algorithm known, it seems that a typical instance of G(n, p) with p =
�(n−2/(k−1)) is in fact a hard instance for k-Clique. This is also suggested by the lower bounds on the size of monotone 
circuits for k-Clique derived recently by Rossman [17] (see also [16]) for p in this range. Thus any substantial improve-
ment to the nk/4+O (1) algorithm above would be a major breakthrough result; not to mention an FPT algorithm running 
in f (k) · nO (1) time, which is perhaps far too much of an improvement than we can expect.1 To avoid this obstacle, we 
consider distributions G(n, p) where p does not depend on k (but may depend on n). Apart from the obvious advantage 
that this gives a real chance at obtaining positive results, we also believe that this a very natural model of practical settings. 
Indeed, in many cases the distribution of the graphs we are interested in is fixed, while the size of the cliques we are 
looking for may vary.

We consider two types of algorithms running in FPT time on average. The first is an avgFPT-algorithm, which is an 
algorithm with expected f (k) ·nO (1) run-time. Thus, an avgFPT-algorithm is required to run in FPT-time on average according 
to the given input distribution. This means that the algorithm is allowed to be slow on some instances, so long as that its 
efficient on average. The notion of avgFPT-time is a natural parameterized analogue of an avgP-time algorithm (see e.g. [7]), 
and is perhaps the most natural definition of the notion “FPT on average”.

We present a very simple avgFPT algorithm for k-Clique for essentially all distributions p := p(n). By essentially, we 
mean all natural distributions that have typical properties, such as certain limit properties (this is made precise in Defini-
tion 5). The first result of this paper is thus the following theorem.

Theorem 1. Let p := p(n) denote a natural distribution function. There is an avgFPT-algorithm for k-Clique on graphs G ∈ G(n, p).

The second type of average-case FPT algorithms we consider are algorithms that run in typical FPT (typFPT) time. By this 
we mean a running time of f (k) ·nO (1) with high probability, where high probability means that the algorithm is allowed to 
be slower only with probability smaller than any polynomial in n. Thus, one may view the difference between a typFPT-time 
algorithm and an avgFPT-time algorithm is that an avgFPT-time algorithm is allowed to be slightly slow on relatively many 
instances, while a typFPT-time algorithm is allowed to be extremely slow on relatively few instances. In stochastic terms, 
this is precisely the difference between bounding the expected value of a random variable and showing that it is bounded 
with high probability. Again, the analogous notion in classical complexity is typical P-time [7].

We show that the same algorithm used in Theorem 1 is actually a typFPT algorithm for k-Clique for any natural p :=
p(n). However, the proof of this result is more involved than the former and requires a rather sophisticated tail bound 
argument.

Theorem 2. Let p := p(n) denote a natural distribution function. There is a typFPT-algorithm for k-Clique on graphs G ∈ G(n, p).

It is worth mentioning that in both theorems above, our algorithms are completely deterministic and always correctly 
decide whether their input graph contains a clique of size k. This makes the proofs more challenging, since the algorithms 
cannot only assume that a k-clique is unlikely to exist in the input, but they must also certify this somehow. Furthermore, 
our algorithms can easily be modified to determining whether a G(n, p) random graph has an independent set of size k. 
Moritz Müller’s PhD thesis [15] provides the first attempt at setting up a framework of parameterized average case com-
plexity. In particular, he defined a notion very much similar to our avgFPT-algorithm, except that in his case the algorithm 
is allowed to have one-sides errors with constant probability. The notion of typFPT has not appeared elsewhere to the best 
of our knowledge. The distinction between these two types of average-case tractability notions is standard in the classical 
world, and in Section 2 we briefly argue why this distinction makes even more sense in the parameterized world. Müller 
also defined an average-case analogue of W[1], and showed that there is some (artificial) problem which is complete for 
it. We discuss this result in the last part of the paper, and show that the k-Clique problem is hard for this average-case 
analogue of W[1] on a specific distribution.

1 Note that f (k) · nO (1) � nk for any function f , when k is fixed and n tends to infinity.
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