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Modern software systems may exhibit a nondeterministic behavior due to many unpre-
dictable factors. In this work, we propose the node coverage game, a two-player turn-based 
game played on a finite game graph, as a formalization of the problem to test such sys-
tems. Each node in the graph represents a functional equivalence class of the software under 
test (SUT). One player, the tester, wants to maximize the node coverage, measured by the 
number of nodes visited when exploring the game graphs, while his opponent, the SUT, 
wants to minimize it. An optimal test would maximize the cover, and it is an interesting 
problem to find the maximal number of nodes that the tester can guarantee to visit, irre-
spective of the responses of the SUT. We show that the decision problem of whether the 
guarantee is less than a given number is NP-complete. We also discuss two extensions of 
our result and present a testing procedure based on our result when the SUT is not so 
hostile.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Coverage-based techniques [29,30] have been widely used in the management of testing projects of large and complex 
software systems. The idea is to model the software under test (SUT) as a finite number of functional equivalence classes
(FEC). The number of FECs that a test plan can cover is then used as an indication of completeness of a verification task 
and quality of the SUT. For white-box testing, typical test criteria include line (statement) coverage, branch coverage, path 
coverage, dataflow coverage, class coverage, function/method coverage, and state coverage [29,30]. For black-box testing, 
popular criteria include input domain coverage, GUI event coverage, etc.

Coverage technique is a common part of quality management techniques that are applied in industry for quality control. 
Full coverage does not normally imply the correctness of the SUT, but empirical studies [17] have shown that coverage-based 
techniques are effective in detecting software faults. High coverage shows that the test engineers have systematically and 
methodically sampled behaviors of the SUT to observe. However, most programs are so complicated that, even if all specified 
items of a program have been tested, the management can obtain high confidence on the quality of the program, but not a 
correctness proof for the program. For example, even if we have achieved full branch coverage in white-box testing (that is, 
even if all conditional branches have been covered in the source code execution), usually the majority of all combinations 
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of truth values are still left unobserved. The correctness of a program, e.g., formalized as the problem whether or not the 
program violates a safety predicate, is undecidable, such that the holy grail of proven correctness is unobtainable.

However, if a project or quality manager sees low coverage, then the manager knows for sure that the behaviors of some 
parts of the SUT have not been observed. Thus, software project managers use coverage techniques to evaluate the progress 
of the testing tasks for an SUT and to manage the quality control process, and ultimately to evaluate their confidence in the 
correctness/quality of the SUT. It is thus important for testers and managers to create test plans that yield high coverage, 
such that they can gain a high confidence on the quality of the SUT and the testing tasks.

However, the test coverage of an SUT has to be achieved with various assumptions and nondeterministic responses of 
the SUT [29,31]. For example, when we observe how a request message is served by a server SUT, we really have no control 
whether the server SUT will finish serving the request, deny the request, or be unaware of the request, e.g., due to loss of 
connection. The best that a verification engineer can do is to use various strategies to try to reach as many FECs of the server 
SUT as possible. We propose to model this problem as a two player finite-state game [31], which we call a node coverage 
game (NC-game for short). The first player is the tester (maximizer; he for short) and the second is the SUT (minimizer; she 
for short). The two players play on a finite game graph with nodes for the FECs, where the nodes are partitioned into the 
nodes that are owned by the tester and the nodes that are owned by the SUT. The tester and the SUT together move a 
pebble from node to node according to the transition relation of the game graph. The tester chooses the next node when 
the pebble is on one of his nodes, while the SUT chooses the successor when the pebble is on one of her nodes. The 
objective of the tester is to maximize the number of visited (covered) nodes, while the SUT wants to minimize the number 
of covered nodes.

An interesting question about NC-games is how much coverage the tester can guarantee, no matter how the SUT reacts 
to the test input. We call this guarantee the maximal coverage guarantee (MCG for short). The MCG is calculated under the 
conservative assumption that the SUT is malicious and tries to minimize the coverage. (For example, a server SUT may 
decline all interaction requests.) This is common in nondeterministic systems, and a test coverage below the MCG certainly 
implies deficiency in test execution.

We show that the MCG decision problem (the problem whether the SUT can resolve the nondeterminism to prevent 
a cover over a given threshold c) is NP-complete. This complexity is lower than those established for related coverage 
problems [5,22]. (They are PSPACE-complete, cf. Section 2.) Our proof technique is based on new observations on games and 
may be itself interesting. Specifically, we observed that although the optimal tester strategies may need be memoryful in 
achieving MCG, the SUT strategies only need be prefix-consistent which means once the SUT makes an optimal decision at 
a node in a play, she can stick to that decision in the play. All in all, our result not only may be theoretically interesting, 
but also may be used as a solid theoretical foundation for testing research.

In the remainder of the paper, we first review related work in Section 2 and basic concepts of game theory in Section 3. 
In Section 4, we define NC-games. We then establish the lower-bound and upper-bound of the MCG decision problem 
complexity, which we prove to be NP-complete, respectively in Section 5 and Section 6. In Section 7, we also discuss the 
complexity results of resettable NC-game decision problems and edge coverage game decision problems. Finally, in Section 8, 
we discuss how to apply our result to software testing in practice when the SUT is not so hostile.

2. Related work

2.1. Classic problems

One related classic problem is the 2-player reachability game [9,21,25,26] on directed graphs. The game can be turn-
based or concurrent. The two players together move a pebble in the game graph. Player 1 wins if and only if eventually a 
node in a target set is reached. The computation of pure strategies of reachability games is in PTIME.

Another related classic problem is the Canadian traveler problem [22] of Papadimitriou and Yannakakis. A problem 
instance is a two player game. The players are given a partially observable game graph and do not know which edges 
are connected. Player 1 may try an edge when he is at the source of the edge. Player 2 then decides whether this edge 
is connected or not. The connectivity of an edge, once decided, cannot be changed by anyone. The answer to a problem 
instance is whether the ratio of the traveling distance over the optimal static traveling distance is lower than a given 
number. The problem is also PSPACE-complete. In contrast, we show that the MCG decision problem is ‘only’ NP-complete.

Yet another classic problem that could be related to this work is the pursuit-evasion game, sometimes called graph-
searching game [15,19,23] on a directed graph with a group of searchers and a group of evaders. A typical version of the 
problem is played as follows. Initially, each searcher (also each evader) stays in a node. In each round, a searcher (also 
an evader) can move to another node depending on various restrictions on the velocity. An evader is caught if she and 
a searcher are in the same node. The decision problem asks whether a given number of searchers is enough to catch all 
evaders. Important (and particularly simple) variants of these games are cops-and-rober games, which are used to determine 
the complexity of directed graphs. The most relevant games of this type are the games to determine the DAG width [2,20]
and entanglement [3] of a directed graph.

For general pursuit-evasion games, we believe that the mobility and velocity of the evaders does not seem natural for 
software bugs. Their role would, however, be quite restricted, as even for the simple cops-and-robber games mentioned 
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