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a b s t r a c t

Five regression models (Poisson, negative binomial, quasi-Poisson, the hurdle model and the

zero-inflated Poisson) were used to assess the relationship between the abundance of a vul-

nerable plant species, Leionema ralstonii, and the environment. The methods differed in their

capacity to deal with common properties of ecological data. They were assessed theoreti-

cally, and their predictive performance was evaluated with correlation, calibration and error

statistics calculated within a bootstrap evaluation procedure that simulated performance

for independent data.

The hurdle model performed best, with the highest correlations between the observed

and predicted abundances. This model was also well calibrated, giving the closest agree-

ment between observed and predicted abundances. The negative binomial was the worst

performing model. It had weaker correlations than the other models and resulted in a

strong, inconsistent bias in predictions. The standard Poisson model which accommodates

neither zero-inflation nor over-dispersion gave accurate estimates of regional population

abundance, but at the individual population level they were inconsistent and biased.

The strong performance of the hurdle model, coupled with theoretical properties that suit

it for these data and for the ecology of this species, suggest that it is a useful alternative

to other modelling methods. The gains in performance have practical advantages where

predictions are used by conservation planners to understand population dynamics or to

assess the relative risks of alternative management scenarios.

© 2006 Elsevier B.V. All rights reserved.

1. Introduction

Environmental managers require estimates of species abun-
dance in a broad range of situations: classifying species
according to the IUCN Red List for threatened species (IUCN,
2001); conducting population viability analyses (Possingham
et al., 2001); managing fire regimes (e.g. the endangered shrub
Grevillea caleyi, Regan et al., 2003); monitoring (e.g. population
changes of pest species over time, Hone, 1999); and reintro-
ducing or translocating animals (Lubow, 1996). Obtaining such
estimates can be resource demanding because surveys are
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expensive and time-consuming, especially if the species is
rare or occurs in remote locations.

Mathematical models that quantify the relationship
between a species’ abundance and environmental charac-
teristics may be used to complement survey work. Predic-
tions of abundance can then be made at unsurveyed locations
and used to guide management decisions. The choice of a
mathematical model should be governed by knowledge of the
species and characteristics of the available data. Accommo-
dating characteristics of the data in a model can increase
its complexity and thus decrease the ease with which it is
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developed, interpreted and understood. There is a trade-off
between complicated models that account appropriately for
characteristics of the data and simpler models that are easier
to develop but may be sub-optimal.

This study explores these trade-offs using data collected
on an Australian threatened plant species, Leionema ralstonii
(F. Muell.) Paul G. Wilson (Rutaceae). The species is protected
under both state and federal legislation due to its small geo-
graphical range (∼40,000 ha in the southeast corner of New
South Wales) and population size (∼18,100 individual plants
distributed across 71 discrete populations on rocky outcrops,
NSW National Parks and Wildlife Service, 2003). Predictions of
species abundance were required to guide management of the
species and as inputs for a population viability analysis (Potts
et al., submitted for publication).

2. Technical review

This paper focuses on regression methods within a gener-
alised linear model framework (McCullagh and Nelder, 1989).
These types of models are used frequently to quantify the
relationship between species abundances and environmen-
tal characteristics (e.g. Wintle et al., 2005; Leathwick et al.,
this issue). Regression models are typically described in
terms of their systematic component in which the response
is linked to the environmental data, and their stochastic
structure that describes the error distribution (Venables and
Ripley, 2002). In order to focus on the link function sepa-
rately to the rest of the systematic component, in this paper
we use the terms model structure and model specification.
Model structure includes both the choice of environmental
characteristics (the explanatory variables) assumed to affect
species abundance (the response variables) and the shape of
the modelled responses (linear, quadratic and so on). Model
specification defines how these variables are related using
a ‘link’ function. The choice of ‘link’ function allows the
response variable to be non-linearly related to the explanatory
variables.

When the response variable is count data (as is the case
when working with abundance observations), the response
variable can be linked to the explanatory variables using a log
transformation (McCullagh and Nelder, 1989):

log(p) = ln(p) = ˇ0 + ˇ1X1 + . . . + ˇNXN (1)

where p is the probability of an event occurring, XN the Nth
independent variable and ˇN is the regression coefficient. In
our example, an event is the mean rate at which individuals
occur on each outcrop (termed �). This model is referred to as
a standard Poisson regression and is the simplest and most
commonly specified model for count data.

This model specification assumes equi-dispersion, mean-
ing if Y is Poisson distributed, then the expectation of Y is
equal to the variance of Y. Since the variance is not constant,
the regression is intrinsically heteroskedastic (i.e. the vari-
ance increases with increasing mean). Violating the assump-
tion of equi-dispersion has similar consequences to violat-
ing the assumption of homoskedasticity in linear regression
(Cameron and Trivedi, 1998). The standard errors of the pre-

dictions are biased because the different populations have
different variances.

If the variance exceeds (or is less than) the mean, then the
data are said to be over- (or under-) dispersed (Cox, 1983). An
indication of the magnitude of over- or under-dispersion can
be obtained by comparing the sample mean and variance of
the dependent count variable. Over-dispersion can be reduced
using explanatory variables. When working with ecological
data the equi-dispersion assumption is commonly violated,
especially if the data are zero-inflated (Cameron and Trivedi,
1998).

Zero-inflated data contain substantially more zeros that
the specified distribution suggests (Tu, 2002). They occur
because the data generating process adds an additional mass
at zero, inflating the probability of observing a zero above
that which is consistent with the specified distribution. It may
therefore be a mis-specification to assume that the zero and
non-zero observations come from the same source. Visual
inspection of a histogram of the observed data might suggest
a spike of zero observations if zero-inflation is present.

Count data for rare species commonly are zero-inflated.
The species may be observed absent at many sites because
of true negative or false negative observations (Martin et al.,
2005b). We can think about these in terms of the source of
the error (i.e. the uncertainty). True negative observations
are attributable to structural zeros (i.e. unsuitable habitat) or
environmental process (i.e. suitable but unoccupied habitat
because the species does not saturate its environment). The
latter are also known as stochastic zeros. False negatives are
attributable to experimental design (i.e. survey site is utilised
by the species, but not during the survey period) or observer
error (i.e. species is present but not detected). If not mod-
elled properly, the presence of excess zeros can violate the
distributional assumptions of the analysis, lead to invalid sci-
entific inferences and create computational difficulties (Tu,
2002). Zero-inflation may cause over-dispersion, but it is pos-
sible for either of these two features to occur independently in
any data set. Formal statistical tests are available for both equi-
dispersion and zero-inflation (see Cox, 1983; Böhning, 1994;
van den Broek, 1995; Ridout et al., 2001; Hall and Berenhaut,
2002).

If a data set is zero-inflated and/or violates the equi-
dispersion assumption, the standard Poisson regression is still
commonly used (Cameron and Trivedi, 1998). We believe this is
because the Poisson model is easy to implement and available
in a number of statistical packages. Incorrectly specifying a
Poisson distribution in the presence of zero-inflation and/or
over-dispersion has two important consequences. Firstly, it
will result in incorrect predictions at each site, although the
average prediction across all sites will be consistent with
that observed (Cameron and Trivedi, 1998; Barry and Welsh,
2002). Secondly, it will cause overly optimistic conclusions
about the statistical significance of the explanatory vari-
ables (i.e. reduced standard errors of the coefficients). This
means that under common model-building procedures such
as stepwise selection, incorrect variables are more likely to
be retained (Fitzmaurice, 1997). Both of these consequences
are important for environmental managers, as either the pre-
dictions and/or the model structure may influence decision
making.
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